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In recent decades, the frequency and intensity of natural disasters has increased significantly, and this
trend is expected to continue. Therefore, understanding and predicting human behavior and mobility during
a disaster will play a vital role in planning effective humanitarian relief, disaster management, and long-
term societal reconstruction. However, such research is very difficult to perform owing to the uniqueness of
various disasters and the unavailability of reliable and large-scale human mobility data. In this study, we
collect big and heterogeneous data (e.g., GPS records of 1.6 million users1 over 3 years, data on earthquakes
that have occurred in Japan over 4 years, news report data, and transportation network data) to study
human mobility following natural disasters. An empirical analysis is conducted to explore the basic laws
governing human mobility following disasters, and an effective human mobility model is developed to predict
and simulate population movements. The experimental results demonstrate the efficiency of our model, and
they suggest that human mobility following disasters can be significantly more predictable and be more
easily simulated than previously thought.
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1. INTRODUCTION

Japan is one of the countries most severely affected by natural disasters. Two of
the five most devastating natural disasters in recent history (1995 and 2011) have
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occurred in Japan, and these have resulted in heavy economic losses and numerous
deaths. According to the Japan Meteorological Agency (JMA), over 10,681 earthquakes
having an intensity of more than one occurred throughout Japan in 2011 alone.
These severe natural disasters usually cause large population movements and evac-
uations. Therefore, understanding these movements is critical for planning effective
humanitarian relief, disaster management, and long-term societal reconstruction for
the governments all over the world. “Even though human movement and behavior
patterns have a high degree of freedom and variation, they also exhibit structural
patterns due to geographic and social constraints” [Cho et al. 2011]. In particular, after
large-scale disasters, the population mobility pattern seems to be highly influenced
by several disaster states and various factors such as the disaster intensity, damage
level, government declarations, and news reports [Song et al. 2013b]. Lu et al. [2012]
found that “population mobility patterns following the 2010 Haitian earthquake
disaster were highly correlated with their daily movements prior to the event,”
and they concluded that population movements after large-scale disasters may be
significantly more predictable than previously thought. Song et al. [2013b] found
that after the Great East Japan Earthquake and Fukushima nuclear accident, in
regions that were instantaneously impacted by the earthquake and tsunami, large
numbers of people sought immediate refuge in nearby cities or government shelters.
However, in regions that were more impacted by the release of nuclear materials,
the evacuation patterns were highly influenced by government declarations and news
reports.

Even though the aforementioned are some of the fundamental questions or hypothe-
ses on human behavior and mobility after natural disasters, answers to these questions
largely remain unknown mostly because there is no reliable approach for accurately
sensing human mobility. Recently, however, mobile phone data, GPS trajectory data,
location-based online social networking data, and IC card data have emerged and in-
creased explosively. These data offer high temporal and spatial resolution to circumvent
the methodological problems faced in earlier research on human behavior modeling,
and they provide longitudinal and latitudinal data for very large populations. There-
fore, in this research, we aim to study human mobility following natural disasters from
two aspects: (1) uncover the basic laws governing human mobility by mining big data
and (2) build an effective model to predict and simulate human mobility.

In this study, we collected big and heterogeneous data to capture and analyze hu-
man mobility following natural disasters in Japan. By mining these big data, we found
that the population behavior and mobility after large-scale disasters (e.g., the Great
East Japan Earthquake and Fukushima nuclear accident) correlated with their mobil-
ity patterns during normal times, and they were also highly impacted by their social
relationship, disaster intensity, damage levels, government-appointed shelters, gov-
ernment declarations, and movements of large population flows (as shown in Figure 1).
Based on these findings, we tried to model the relationship between human behav-
ior and these influencing factors during disasters and developed a human mobility
model for predicting population movements following natural disasters. In our work,
we decomposed the prediction problem into two subproblems (as shown in Figure 2):
(1) given the current disaster state, influencing factors, and observed human move-
ments, predict the possible behavior in the next step, and then (2) predict the possible
movements and transportation mode given the estimated behavior distribution. Fur-
thermore, we extracted general knowledge of human disaster behaviors based on these
data and developed a knowledge transfer model to simulate human mobility during
disasters for any people, any place, and any disaster. Our work will have the following
key characteristics that make it unique in the community:
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Fig. 1. Prediction of human behavior and mobility following large-scale disasters.1 Can we predict
human behavior and movements during disasters by modeling their past movements? If some disaster occurs
in the future, given a person’s currently observed movements, where will this person go in the next time
period? What will this person’s traveling route be?

—Big and heterogeneous data: GPS records from 1.6 million users over 3 years,1
Japan earthquake data over 4 years, news reporting data, transportation network
data, and so forth.

—An effective model of human mobility during disasters: Our model can predict
and simulate human emergency mobility following natural disasters. To the best
of our knowledge, this work is the first to model human behavior during various
disaster states, and it can accurately predict and simulate population movements
following different disasters.

The remainder of this article is structured as follows. Section 2 briefly reviews related
works. Section 3 introduces heterogeneous data and the empirical analysis of popula-
tion mobility patterns following the Great East Japan Earthquake and Fukushima
nuclear accident. Section 4 describes the human behavior model based on our empir-
ical analysis and the prediction of human behavior after disasters. Section 5 provides
details about urban mobility model learning and the prediction of human mobility.
Section 6 introduces knowledge transfer from the big disaster data and our simulation

1We used “Konzatsu-Tokei (R)” from ZENRIN DataCom. “Konzatsu-Tokei (R)” data refers to people flows and
it is collected from mobile phones with the enabled AUTO-GPS function under users’ consent and agreement,
through the “docomo map navi” service provided by NTT Docomo. The statistics data is anonymized and
aggregated so that individual information can never be retrieved. The anonymization and aggregation were
made by NTT Docomo based on the request of Zenrin DataCom Co. Original location data is GPS data
(latitude, longitude) sent in about every a minimum period of 5 minutes and does not include any personal
information, such as gender or age. The processing of raw GPS data for this study was conducted by NTT
Docomo.
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Fig. 2. Overview of the approach.1 Our approach decomposes the prediction problem into two subprob-
lems: (1) First, we use people’s past movements during disasters and places important to them to train a
hidden Markov model (HMM)-based human behavior model. Then, given a person’s current observed move-
ments and disaster states, our model predicts their possible behavior in the next time period. (2) Second, we
use the entire collected population movements of a specific urban area and their transportation mode label to
train the urban mobility model. Then, our model predicts a person’s possible movements and transportation
mode given the predicted behavior in the next time period.

model. Section 7 presents the experimental results. Finally, Section 8 summarizes this
article.

2. RELATED WORKS

Recently, many studies have investigated human mobility patterns following disas-
ters [Moussaid and Helbing 2009; Hahm and Lee 2009], with a focus on small-scale
or short-term emergencies (e.g., crowd panics, fires, etc.). However, research on the
dynamics of population movements on a national scale following large-scale disasters
(e.g., earthquakes, tsunamis, and hurricanes) is very limited [Lu et al. 2012]. In this
regard, automobile sensor data [Song et al. 2010; Gonzalez et al. 2008; Lu et al. 2012;
Bagrow et al. 2011; Song et al. 2010; Eagle et al. 2009] and social network data [Wang
et al. 2014] offer a new way to circumvent the methodological problems faced in earlier
research. Furthermore, human mobility or trajectory data mining [Chen et al. 2010,
2011; Giannotti et al. 2011; Li et al. 2010; Yuan et al. 2012; Backstrom et al. 2010;
Giannotti et al. 2007; Li et al. 2010; Scellato et al. 2011; Zheng et al. 2009; Li et al.
2010; Xue et al. 2013; Su et al. 2013; Yuan et al. 2013; Ge et al. 2014; Zhu et al. 2014;
Ying et al. 2013; Zheng et al. 2014] has gained much interest in various research fields.
Zheng et al. [2009] aimed to mine interesting locations and travel sequences from GPS
trajectories. Cho et al. [2011] proposed a periodic mobility model (PMM) for predicting
the dynamics of future human movements by using check-in data. Ye et al. [2013] pro-
posed an HMM-based human behavior model to predict human activity from check-in
data. Yuan et al. [2013] proposed a graph-based model for summarizing population
mobility.

More recently, Lu et al. [2012] collected data from 1.9 million mobile users in Haiti
to analyze population displacement after the 2010 Haitian earthquake and concluded
that population movements during disasters may be significantly more predictable
than previously thought. Gao et al. [2014] collected cell phone data to study people’s
communication patterns during anomalous events. Song et al. [2013b, 2014a] collected
data from 1.6 million GPS users in Japan to mine and model population evacuations
during the 2011 Great East Japan Earthquake and Fukushima nuclear accident and
demonstrated that the prediction of large population movements after a large-scale
disaster was very possible. However, owing to the lack of a powerful human behavior
model that can fully depict how different disaster factors will influence population
mobility patterns, they cannot accurately predict behavior or mobility for an individual
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Fig. 3. Big and heterogeneous data source.1 This figure shows the heterogeneous data source of our
system. (a) Human mobility in Fukushima during the Great East Japan Earthquake and (b) human mobility
in Osaka with the transportation mode label. (c) Information on earthquakes throughout Japan in March
2011. (d) Urban mobility graph of Fukuoka. The edge color indicates the edge parameters. Here, it shows
the travel frequency after the disasters; warmer colors indicate higher travel frequency, and these values
are normalized from 0 to 1.

person. Thus, in this study, we first try to develop a concise human behavior model for
accurately predicting and simulating human mobility after natural disasters.

This article is an extended version of Song et al. [2014b, 2015]. Compared to the previ-
ous version, we have updated the human mobility data source by adding transportation
mode labels (e.g., stay, walk, bicycle, car, train) and considered people’s transportation
patterns to predict their mobility following disasters. In addition, we propose to use a
multimodal route planning approach [Delling et al. 2013; Bast et al. 2013] to simulate
human mobility in transportation networks during small-scale disasters.

3. HETEROGENEOUS DATA AND EMPIRICAL ANALYSIS

3.1. Heterogeneous Data Source

In this study, we utilized big and heterogeneous data sources to understand human
behavior and mobility following natural disasters; these were summarized as follows:

Human mobility data: We collected GPS records of approximately 1.6 million
anonymized users1 throughout Japan from August 1, 2010, to July 31, 2013 (as shown
in Figure 3(a)). To manage these data, we utilized five computers to build up a Hadoop
cluster that contained 32 cores, 32GB memory, and 16TB storage and that could run
28 tasks simultaneously. It can provide indexing, retrieval, editing, and visualization
services. Compared to our previous research [Song et al. 2014b, 2015], the transporta-
tion mode labels (e.g., stay, walk, bicycle, car, train) of people were added to the data
source (as shown in Figure 3(b)).
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Fig. 4. Distribution of geographic location for one of the authors.1 This figure shows the distribution
of geographic locations for a specific person (one of the authors of this article) during normal times. The color
denotes the probability of this person staying at a location during a specific time period; warmer colors
indicate higher probability. Figure (a) shows this distribution on working days, and Figure (b) shows the
same on important holidays (e.g., national holiday, New Year Festival, Christmas day).

Disaster information data: We collected earthquake data throughout Japan from
January 1, 2010, to December 31, 2013 (as shown in Figure 3(c)). These data contain the
occurrence time, earthquake hypocentral location, earthquake magnitude, earthquake
intensity for impacted places, damage level (1–7) (e.g., destroyed buildings and deaths
caused by the earthquake or tsunami), and so forth.

Disaster reporting data: We collected government declarations as well as news
reports from mainstream media in Japan and all over the world for large-scale disasters
(the Great East Japan Earthquake was the only large-scale one we considered in this
study). Based on this information, we invited three persons (two with an academic
background and one without any academic background) to empirically divide these
declarations and reports into four levels to measure the disasters. Here, level one
means that the government declarations and reports were not serious, whereas level
four means that they were extremely serious. For instance, if the government requires
the victims to leave their hometowns, the level should be four. In contrast, if the
government does not issue any administrative orders, the level should be one.

Transportation network data: We collected the road network data and metro
network data for the main cities in Japan. These data contain road structure and POI
information.

3.2. Empirical Analysis of Human Disaster Behavior

Discovery of important places: Although people are now traveling farther and faster
than before, they still spend much of their time at a few important places. To analyze
people’s behavior during a disaster, we need to discover and recognize important places
in people’s lives, for example, home, working places, and places of important social
relationships (e.g., hometown, parents, relatives, and good friends). In this study, we
utilized GPS data for several months (August 1, 2010, to March 11, 2011) before the
Great East Japan Earthquake to compute the distribution of geographic locations [Song
et al. 2013b; Tan and Kumar 2005] for individual people (as shown in Figure 4). Based
on the analysis of this distribution with time, it is easy for us to find and recognize
some important places for individual people. For example, during the daytime on a
working day, people are usually at their workplace with the highest frequency, and
during the night, they are usually at home (as shown in Figure 4(a)). Meanwhile, some
high-frequency visited places on weekends and some important holidays (e.g., national
holiday, New Year, Christmas) are recognized as people’s important social relationships
(as shown in Figure 4(b)). Furthermore, we also computed people’s geographic location
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Fig. 5. Discovery of people’s important places before and after the earthquake.1 The first two
figures show people’s geographic location distribution before and after the earthquake. The size of the circles
indicates the probability of an individual person staying at a location at a specific time; larger circles indicate
higher probability of a person staying or living at a location. Blue and orange circles indicate the distribution
before and after the earthquake, respectively. Based on the analysis of this distribution with time, we discover
a person’s important places (as shown in the third figure).

distribution after the Great East Japan Earthquake and Fukushima nuclear accident
in a specific time period, and we discovered some high-frequency staying places to
analyze human disaster behavior. Figure 5 shows an example.

Empirical analysis: Based on the seismic scale of the earthquake and the damage
level of this composite disaster, we focused on analyzing the population behaviors in
the Greater Tokyo Area (the largest metropolitan area in the world with more than
one-third the GDP of Japan) and in Fukushima, Miyagi, and Iwate prefectures. In most
areas of Fukushima, Miyagi, and Iwate prefectures, the damage level was the highest,
and the seismic scale of the earthquake was above five. In contrast, in the Greater
Tokyo Area, the damage level was one and the seismic scale was three to four, both
of which were relatively low. Although the Greater Tokyo Area did not suffer much
damage in this composite disaster, its public transportation systems were completely
disrupted (almost the entire metro or railway services). On the other hand, we found
that in the first 24 hours after the earthquake, population behaviors or evacuations
were mainly in response to the huge earthquake and tsunami themselves. In contrast,
during the next several days, the Japanese people understood the seriousness of the
Fukushima nuclear accident, prompting large numbers of evacuations or long-distance
movements. Therefore, we performed an empirical analysis of the population behavior
in two separate time periods.

Figure 6 shows the statistics of various types of human behaviors after the disasters
in the Fukushima, Miyagi, and Iwate prefectures and the Greater Tokyo Area, as well
as some important news reports related to this event. During the first 24 hours after this
disaster, most behaviors of people in the Greater Tokyo Area (Figure 6(a)) were similar
to those during normal times; however, at night (8–16 hours after the earthquake),
many people had to stay at unknown places (e.g., metro station, hotel, restaurant, etc.)
or with their social relations (e.g., friends and colleagues) owing to the disruption of
the public transportation systems. In contrast, in most areas of Fukushima, Miyagi,
and Iwate prefectures, people chose to stop their work while the earthquake occurred
and sought refuge at once at some safe and unknown places (Figure 6(b)) owing to the
huge earthquake and tsunami.

On the other hand, during the first 19 days after the earthquake, the majority of
people in Fukushima, Miyagi, and Iwate prefectures (Figure 6(d)) chose to leave their
home and stopped working owing to the high damage level of this disaster as well
as the extensive release of radioactivity. Therefore, they usually went to stay with
their social relations or stayed at some unknown places (e.g., government-appointed
shelters, hotels in large neighboring cities, etc.). In contrast, the situation in the Greater
Tokyo Area was slightly different (Figure 6(c)). Although most areas in the Greater
Tokyo Area were not severely damaged, when people began to more fully understand
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Fig. 6. Empirical analysis of human behaviors after the Great East Japan Earthquake and
Fukushima nuclear accident. This figure shows the percentage of different human behaviors after this
disaster with some important news reports. Figures (a) and (b) show an analysis of human behaviors in
the first 24 hours after this disaster in the Greater Tokyo Area and in the Fukushima, Miyagi, and Iwate
prefectures. Figures (c) and (d) show the cases during the first 19 days after this disaster.

the seriousness of the Fukushima nuclear accident from the mainstream worldwide
media, they stopped working and chose to move far away from East Japan (from 3/15
to 3/27).

4. PREDICTION OF HUMAN DISASTER BEHAVIOR

Based on our empirical analysis of human behavior, we concluded that human behavior
and mobility following the Great East Japan Earthquake and Fukushima nuclear
accident was sometimes correlated with people’s mobility patterns during normal times
and was also highly impacted by their social relationships, disaster intensity, damage
level, government-appointed shelters, government declarations, news reporting, and so
forth. Therefore, in this section, we study and present details regarding how to model
human behavior during disasters and how to predict their possible behavior in the next
time period.

4.1. Preliminaries

Consider a set of individual people’s GPS trajectories Tra = {tra1, tra2, . . . , tran}
after disasters, where each trajectory trai = r1r2 . . . rm consists of a series of m
GPS records and disaster information. Each record r is a tuple in the form of
r = <uid, time, latitude, longtitude, distance, intensity, damage, reporting, behavior>,
where uid is the id of people, time is the time of record, and latitude and longtitude
specify the geographic position of the record. distance is the distance from the event
(e.g., Fukushima Daiichi nuclear power plant), intensity is the seismic scale of the earth-
quake at this position, damage is the damage level of this position, and reporting is
the government declaration and news reporting level. Here, behavior specifies people’s
behavior related to the discovered important places before and after the earthquake (as
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Fig. 7. HMM-based human behavior model.1 Given a person’s important places, we use their past
movements under various types of disaster states to train an HMM-based human behavior model.

shown in Figure 7), for example, stay at home, work in office, go to important social re-
lationships, evacuate to nearby cities, evacuate to government-appointed shelters, and
so forth, and it is a label of discovered important places as described in the previous
section.

Therefore, our goal is to learn a prediction model from Tra. Given an individual
person’s GPS trajectory traob = r1r2 . . . rt from time 1 to time t, we want to predict
their behavior in the next specific time period p at time t + p.

4.2. Disaster Behavior Model

HMM-Based behavior model: In this study, we use an HMM [Ye et al. 2013; Zucchini
and MacDonald 2009] to model the dependency between disaster behaviors. In our
problem, we define a set of hidden states S = {s1, s2, . . . , sM} that correspond to the
human behavior states and a set of observations Z = {z1, z2, . . . zN} that correspond
to the people’s GPS records and related disaster states. Figure 6 shows the overall
behavior model with its graphical representation. In our study, the following three key
parameter components of the HMM need to be learned: (1) initial state probability
φsi for each hidden state si ∈ S, (2) state transition probability ψsi ,s j from the hidden
states si to s j , and (3) state-dependent output probability P(z j |si) that determines the
probability of the person’s mobility z j ∈ Z given the hidden behavior state si ∈ S.

We determine people’s mobility within a specific time period as a sequence of length
T , that is, tra = Z1Z2 . . . ZT (abbreviated as tra = Z1:T ), and we use these observed
sequences to train the HMM. Here, Zt ∈ Z represents the observed person’s mobility
at time t, 1 ≤ t ≤ T . Each Zt is associated with a random variable St ∈ S, representing
the unknown behavior state at time t. In the following, we present details of HMM
learning.

Model learning: To learn the overall behavior model, we need to estimate the key
parameters of HMM as discussed earlier. A suitable solution is to use the EM approach
that aims to maximize the likelihood of the observation sequences. In our study, the
overall likelihood needs to be summed over all possible routes through the underlying
hidden states, and it can be computed as follows:

P(Z1:T ) =
SM∑

S1=s1

. . .

SM∑

ST =s1

φS1

T∏

t=2

ψst−1,st

T∏

t=1

P(Zt|St). (1)
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Here, we assume that the HMM is time homogeneous and that the state-dependent
output probabilities or state transition probabilities do not change with time t.

According to Zucchini and MacDonald [2009], we reformulate Equation (1) as follows:

P(Z1:T ) = �PZ1�PZ2 . . . �PZT 1�, (2)

which is expressed by matrix multiplications to reduce the computational cost. Here, �
is a 1× M initial state distribution vector, � is an M× M hidden state transition matrix
where �i j = ψsi ,s j , and PZT is a M × M diagonal matrix with P(Zt|si) on the diagonal
and other entries as 0. Then, we can use the Baum-Welch algorithm [Baum et al.
1970] to estimate the state-dependent output probabilities and hidden state transition
probabilities.

To decide the correct number of hidden states M in HMM learning, we follow Ye et al.
[2013] and use the Bayesian Information Criterion (BIC) [Schwarz 1978] to evaluate
the model with various state numbers; a smaller value always provides better fitness.

4.3. Prediction of Disaster Behavior

Human mobility within a small time scale will obey higher-order correlation with
locations they visited in the past, so we assume this is a Markov process and predict
human behavior through Bayesian inference. When given a length-t observed GPS
record and its related disaster states Z1:t, we can predict people’s behavior St+1 at
time t + 1 with the learned HMM. This prediction can be achieved by maximizing the
probability as follows:

St+1 = arg max
si∈S

P(St+1|Z1:t), (3)

where P(St+1|Z1:t) can be computed from the learned ψst,st+1 and P(St|Z1:t) according to
the law of total probability as follows:

P(St+1|Z1:t) =
∑

ψst,st+1 P(St|Z1:t), (4)

where P(St|Z1:t) can be computed by a Bayesian recursion as follows:

P(St|Z1:t) = γ P(Z1:t|St)
∑

ψst,st−1 P(St−1|Z1:t−1), (5)

where γ is the normalization constant, and P(Z1:t|St) is the learned observation model
of HMM that corresponds to the observed human mobility and disaster states.

To perform efficient behavior prediction, we utilize a particle filter [Doucet et al. 2000]
approach to compute Equations (3) through (5). The basic idea behind a particle filter
is very simple. Starting with a weighted set of samples {w(k)

t , s(k)
t }K

k=1 is approximately
distributed according to p(st−1|zt−1), and new samples are generated from a suitably
designed proposal distribution q(st|st−1, zt). To maintain a consistent sample, the new
importance weights are set to

w(k)
t ∝ w

(k)
t−1

p(zt|s(k)
t )ψs(k)

t ,s(k)
t−1

q(s(k)
t |s(k)

t−1, zt)
,

K∑

k=1

w(k)
t = 1. (6)

More details on the particle filter technique can be found in Doucet et al. [2000]. In our
study, the overall filtering process is as follows:

1. Initialization: Generate K weighted set of samples {w(k)
t , s(k)

t }K
k=1 from the learned

initial state probability φsi of the HMM.
2. Resampling: Resample K particles from the particle set St using the weights of

respective particles.
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3. Prediction: Predict the next state of the particle set St with the learned transition
probability ψsi ,s j of HMM.

4. Weighting: Recalculate the weight of St by using Equation (6). Here, we utilize the
learned observation model P(Z1:t|St) of the HMM as the proposed distribution in
Equation (6).

5. State Estimation: Estimate people’s behavior states by calculating the expectation
of the particle set St.

6. Iteration: Iterate Steps 2, 3, 4, and 5 until convergence.

During the particle filtering process, we can easily obtain people’s current behavior
state St in stage 5 and predict people’s behavior St+1 at the next time period in stage 3.

5. PREDICTION OF HUMAN MOBILITY AFTER DISASTER

Given the predicted behavior of an individual person after the disasters, we also need
to predict their possible mobility or evacuation routes, which will play a vital role in
effective humanitarian relief and disaster management. In our study, people’s pre-
dicted behavior usually corresponds to important places, for example, home, working
places, parents’ or relatives’ home, government-appointed shelters, and so forth. Given
a predicted place and its current location, it is not difficult to find a possible route
for a specific person. However, a person’s mobility following a large-scale disaster is
usually different from that under normal circumstances. During the disaster, a per-
son’s mobility will usually be impacted by other people, and they usually tend to find
much safer routes for evacuations [Song et al. 2013b]. Furthermore, in most cases, a
common transportation network is usually unavailable following large-scale disasters.
Therefore, in this section, we present details on how to predict human mobility or their
evacuation routes after disasters. Compared to our previous study [Song et al. 2014b,
2015], we consider the transportation mode (e.g., stay, walk, bicycle, car, train) em-
ployed by people to construct a mobility graph and predict human mobility following
the disaster. Here, the transportation mode is the key information for planning people’s
traveling routes following the disaster, and it can significantly improve the prediction
accuracy.

5.1. Mobility Graph Construction

Given the predicted places where an individual person will go and their current location
after the disaster, it is easy to think of using transportation networks to plan and predict
their possible movements. However, most public transportation systems are usually not
available after an earthquake. Furthermore, based on our previous research, we found
that population mobility after large-scale disasters is highly impacted by other people,
and sometimes, a large population flow is created [Song et al. 2013a, 2013b, 2014a].
Therefore, modeling large population movements after the disaster will play a vital
role in the prediction of an individual person’s mobility. In this study, we utilize a large
number of population trajectories with transportation mode labels following the Great
East Japan Earthquake and Fukushima nuclear accident to construct a population
mobility graph to model their mobility through collaborative learning [Wei et al. 2012].
The creation of this type of model is possible because social interactions and political
responses in some urban areas are typically stable through time, and large population
movements (which are often influenced by these conditions) are likely to remain the
same following different emergency situations (e.g., public transportation systems are
unavailable again).

To construct the population mobility graph, we first need to discover connected urban
areas after the earthquake with the population movements. We divide the geographical
range into disjoint cells by a given cell length l. Thus, the specific position of persons
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can be mapped to a cell, and the overall population trajectories are transformed into a
sequence of cells. Then, we computed the connection support of these cells and explored
the connected geographical regions. After cell merging, we can build up the region of
the population mobility graph. More technical details of this process are available in
Wei et al. [2012] and Song et al. [2014a].

Then, we need to infer the edge connections and derive some edge information after
region generation, such as travel frequency, travel time, and frequency of different
transportation mode. In this study, we follow Wei et al. [2012] and Song et al. [2014a]
and use population movements traversing the regions to derive edge connections or
information. For each trajectory traversing the regions, the shortest path between
any two consecutive points of the trajectory is inferred, and then the travel time of
each edge is estimated by the median of all travel times of the edge. In addition, the
travel frequency of each edge can be estimated by recording the number of traversing
trajectories, and different types of transportation mode are also recorded. Then, we can
easily compute the transportation mode possibility in each edge (e.g., stay, walk, bicycle,
car, train). Similarly, we can also generate edges between regions: if some trajectories
traverse from one region to another, an edge is constructed between the two regions,
and its edge information is estimated by the same methods as in previous discussions.

5.2. Urban Mobility Model Learning

Based on the constructed urban mobility graph, the prediction model can be developed
using the Markov decision process (MDP) [Puterman 1994]. MDPs provide a natural
framework for representing sequential decision making, such as movements through
various urban areas. In MDP theory, the agent takes a sequence of actions (a ∈ A) that
transition between states (s ∈ S) and incur an action-based cost (c(a) ∈ �). The agents
try to minimize the sum of costs while reaching some destinations, and the sequence of
actions is called a path ζ . For MDPs, a set of features (fa ∈ �) characterizes each action,
and the cost of the action is the linear function of these features that are parameterized
by a cost weight vector (φ ∈ �). Path features fζ are the sum of the features of actions
in the path:

∑
a∈ζ fa. Thus, the cost weight applied to the path features is

cost(ζ |φ) =
∑

a∈ζ

φ�fa = φ�fζ . (7)

In our problem, the population mobility graph provides us a deterministic MDP. The
urban region (nodes) represents a state; the edge, an action; and the path, people’s
movements after the earthquake. These movements are parameterized by their path
feature fζ . For instance, a person’s movements can be described as follows: travel
through region A (dens = 0.37, type = residential) to region B (dens = 0.58, type =
commercial) and finally stay in region C (dens = 0.75, type = administrative) with route
1 ( f rq = 0.37, time = 0.58, trans = [0.05, 0.12, 0.11, 0.62, 0.10]) (A → B) and route 2
( f rq = 0.29, time = 0.62, trans = [0.03, 0.22, 0.08, 0.42, 0.25]) (B → C), where dens
is the region population density; type, the region type (e.g., residential, commercial,
etc.); f rq, the travel frequency of the route; time, the travel time of the route; and
trans, a vector that shows the probability of different transportation modes (stay, walk,
bicycle, car, and train). Therefore, we need to utilize all the population trajectories
to train an MDP model that can optimally demonstrate these human behaviors after
the earthquake. Obviously, this is an Inverse Reinforcement Learning problem. In this
study, we utilize the Maximum Entropy Inverse Reinforcement Learning algorithm
[Ziebart et al. 2008] to train the overall predictive model. With this training model,
people’s movements or behaviors during some future emergency situations can be easily
simulated or predicted [Song et al. 2013b, 2014a].
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Fig. 8. Knowledge transfer and model development. We model human activities and mobility follow-
ing disasters as random transitions through their home, working location, social relationships, and some
unknown places (e.g., shelters or hotels). The transition process will be impacted and influenced by vari-
ous disaster factors. We develop an HMM-based model and utilize big and heterogeneous data to train its
parameters.

5.3. Prediction of Human Mobility

Given the predicted places where an individual person will go, his or her current
location after the disaster, and the learned urban mobility models, we can easily pre-
dict human movements by performing Markov model route planning. In our study,
we assume that people usually try to find a safe, fast, and convenient route (e.g.,
high-frequency visited route, low travel time, and few transfers) for evacuation after
the disaster. Therefore, we employ route planning using the destination-conditioned
Markov model [Simmons et al. 2006]. This model recommends the most probable route
satisfying the origin and destination constraints. Lastly, we obtain the predicted route
for a specific person.

6. KNOWLEDGE TRANSFER AND MOBILITY SIMULATION

Owing to the uniqueness of the Great East Japan Earthquake and Fukushima nuclear
accident, our prediction model is difficult to apply to some different disasters (e.g.,
small-scale ones) and to places not affected by this disaster. Furthermore, the prediction
model can only be applied to a specific person for whom historical GPS records are
available in the database. Therefore, in this section, we extend our model and try
to (1) discover general knowledge from big disaster data and (2) develop a general
simulation model for generating or simulating a large amount of human movements
following different natural disasters.

6.1. Knowledge Transfer and Simulation Model

Based on previous empirical analysis on human mobility data following disasters, we
find that although human behavior and mobility patterns following natural disasters
have a high degree of variation and freedom, most mobility is usually based on random
movements between a small set of important places, such as home location, working
location, social relationships (friends’ houses, hometown, etc.), and some unknown
places (e.g., shelters, hotels, etc.). Meanwhile, these mobility patterns are also impacted
and influenced by various factors (as shown in Figure 8). For instance, if a low-intensity
earthquake occurs at midnight, people may stay at home and go back to sleep. In
contrast, if a large earthquake occurs at midnight and causes some damage to buildings,
people may leave their houses and find some safe places to stay; however, in doing so,
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Fig. 9. Emergency mobility simulation. Based on our training HMM, we randomly simulate the location
transition sequences. Then, we utilize the transportation network or pretrained urban mobility model to plan
the traveling routes, and we finally generate human movements following disasters.

they need to consider the travel distance or travel time. Furthermore, if a very large
earthquake (such as the 2011 Great East Japan Earthquake) occurs and becomes a
composite disaster accompanied with many negative news reports, people may leave
the city and find a safe place (e.g., hometown) that is far from the disaster.

Preliminaries: Consider a set of individual people’s activities Activity =
{act1, act2, . . . , actn} after the disaster, and each activity acti = l1 → l2 → · · · → lm
denotes a series of m location transfers with the disaster information. Each location
l is a tuple in the form of l = <uid, time, label, latitude, longtitude, distance, intensity,
damage, reporting>, where uid is the id of people, time is the current time, and label
specifies a person’s important places such as home location, working location, places of
important social relationships, and unknown places. Here, latitude and longtitude spec-
ify the geographic position of this location, distance is the distance from the earthquake,
intensity is the seismic or intensity scale of the earthquake at this location, damage
is the damage level of this location, and reporting is the government declaration and
news reporting level. Therefore, our goal is to learn a general model from Activity.
Given a series of people’s important places and disaster information (e.g., different
earthquakes in our disaster information database), we want to randomly simulate or
generate people’s location transition sequences with the probability.

HMM-based model: Therefore, given a set of disaster information Y =
{y1, y2, . . . yN} such as intensity of earthquake, damage level, news reporting, current
time, travel distance, and travel time, we model human activities and mobility follow-
ing disasters as a random transition through a series of states X = {x1, x2, . . . , xM},
such as home location, working location, social relationship, and some unknown places
[Song et al. 2015]. Therefore, we use the HMM as discussed in Section 4.2 to model the
dependency between these states, and the overall behavior model with its graphical
representation is shown in Figure 8. In this part, we utilize the same training approach
as that discussed in Section 4 to train the (1) initial state probability φxi for each hid-
den state xi ∈ X, (2) state transition probability ψxi ,x j from the hidden states xi to x j ,
and (3) state-dependent output probability P(y j |xi) that determines the probability of
people’s mobility y j ∈ Y given the hidden behavior state xi ∈ X.

6.2. Emergency Mobility Simulation

Given a series of people’s important places and disaster information, we aim to ran-
domly simulate and generate their movements following this disaster (as shown in
Figure 9). The simulation process mainly has two stages: (1) based on the training
HMM behavior model, we randomly generate location transitions through important
places; and (2) given the location transition sequences, we use the transportation net-
work or pretrained urban mobility graph discussed in Section 5 to plan the traveling
routes. Compared to our previous work [Song et al. 2015], we consider the transporta-
tion mode (e.g., stay, walk, bicycle, car, train) of people to plan the traveling routes.
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To randomly generate a person’s location transition sequence following disasters,
we utilize the particle filter [Doucet et al. 2000] approach discussed in Section 4 to
simulate this process:

1. Initialization: Generate P weighted set of samples {w(k)
t , x(p)

t }P
p=1 from the learned

initial state probability φxi of our trained HMM.
2. Resampling: Resample P particles from the particle set Xt using the weights of

respective particles.
3. Location Transition Simulation: Simulate the state transition of the particle

set Xt with the learned transition probability ψxi ,x j of our trained HMM.
4. Weighting: Recalculate the weight of Xt. Here, we utilize the learned observation

model P(Y1:t|Xt) of our trained HMM as the proposed distribution.
5. Behavior Selection: Select a person’s transition behavior by finding the highest

weight in the particle set Xt.
6. Iteration: Iterate Steps 2, 3, 4, and 5 until convergence.

Finally, given the location transition sequences of people following disasters, there
are two ways to simulate their traveling routes. For small earthquakes, we can directly
use the transportation network (e.g., road network data and metro network) of cities
to plan people’s traveling routes. Here, we consider the transportation mode of people
and use a multimodal route planning approach [Delling et al. 2013; Bast et al. 2013]
to compute fast and convenient routes (e.g., low travel time and few transfers). On
the other hand, for large-scale earthquakes, public transportation systems are usually
unavailable. Therefore, we use the pretrained urban mobility graph as discussed in
Section 5 to plan the optimal traveling route (as shown in Figure 9).

7. EXPERIMENTAL RESULTS

In this section, we present extensive experimental results and evaluate our approach
for the prediction of human behavior and their mobility.

7.1. Data Preprocessing and Experimental Setup

To evaluate the prediction model, we focused on predicting the population behaviors
and their movements in Fukushima, Miyagi, and Iwate prefectures and in the Greater
Tokyo Area following the 2011 Great East Japan Earthquake. The three prefectures
are the major disaster areas of the Great East Japan Earthquake and Fukushima
nuclear accident; the Greater Tokyo Area is the largest metropolitan area in the world
and was highly impacted by this event. We selected a person who had more than
3,000 GPS records during the first 20 days after the Great East Japan Earthquake for
evaluation, and more than 130,000 persons were analyzed in total. We utilized the GPS
records of these persons for several months before this earthquake (August 1, 2010,
to March 11, 2011) and for the first 20 days after this earthquake to compute the dis-
tribution of geographic locations for individual people and discovered their important
places. Meanwhile, we randomly selected 80% of the GPS trajectory segments (with
the transportation mode label) for each person after the earthquake to train individual
people’s behavior models and the urban mobility graph as well as MDP model for entire
urban areas. We used the remaining 20% of the data of each person for testing and
evaluation. On the other hand, to evaluate the performance of the simulation model
(disaster knowledge transfer), we selected human movements (GPS trajectory with the
transportation mode label) in 24 hours following different earthquakes from our human
mobility database; the selected geotropical regions were places where the earthquake
intensity was above one. These GPS trajectories and the related disaster information
and disaster reporting information formed the training and testing datasets. We
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Fig. 10. Visualization of the prediction results without using transportation mode information.1
This figure shows our prediction results for human behaviors and their possible movements without using
transportation mode information. Given a person’s current observed movements (blue lines in Figures (a) and
(d)) and their important places (blue and orange circles), the possible destinations are predicted as indicated
by red circles (Figures (a) and (d)). Meanwhile, given the learned urban mobility graph (Figures (b) and
(e)), a person’s possible movements are predicted as indicated by bold and colorful lines (Figures (c) and
(f)), and the ground truth is indicated by white lines (Figures (c) and (f)). The first row shows the example
results of the person in the Greater Tokyo Area, and our approach predicted his possible movements in the
next 4 hours. The second row shows the person’s case in Fukushima prefecture, and our model predicted
his possible movements in the next 1 day. Note that the edge color in Figures (b) and (e) indicates the edge
parameters of the urban human mobility graph. Here, it shows the travel frequency after the earthquake.
Warmer colors indicate higher travel frequency, and this value is normalized from 0 to 1. In addition, the
color of the predicted trajectories ((c) and (f)) shows the probability as normalized from 0 to 1. The warmer
color indicates higher probability.

randomly selected 80% of the data for the model training and used the remaining 20%
of the data for testing and evaluation. In the training process, we found that most
of the training data were from some very small-scale earthquakes. To balance the
training samples of large- and small-scale disasters, we randomly selected 20% of the
data from the small-scale disaster set for which the earthquake intensity is below
three, and we use them with other disaster data to form a new training sample dataset.
We then converted the GPS trajectories in the training set to a sequence of transitions
through important places, as discussed in Section 6, to prepare the training samples.

7.2. Visualization of Prediction Results

Figure 10 shows the visualization of our prediction results without using transportation
mode information. Given the persons’ current observed movements (blue lines) and
their important places, our approach predicted the possible destination by the red
circle (Figures 10(a) and (d)). Meanwhile, given the learned urban mobility graph
(Figures 10(b) and (e)), a person’s possible movements were predicted as indicated by
bold and colorful lines (Figures 10(c) and (f)), and actual movements are shown by
white lines. The first row shows the example results of a person in the Greater Tokyo
Area and the predicted possible movements by our approach in the next 4 hours. The
second row shows the case of a person in Fukushima prefecture and the predicted
possible movements by our model in the next 1 day.
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Fig. 11. Visualization of the mobility prediction results by using transportation mode
information.1 This figure shows our mobility prediction results by using the transportation mode informa-
tion. Given the persons’ current observed movements (blue lines) and their important places (circles), their
mobility and transportation mode were predicted as the colorful lines (e.g., orange line for by car, red line for
by walk) as shown in Figure (b). The first row (Figures (a) and (b)) shows the comparison of single-person
results between transportation mode information using and nontransportation mode information using. The
second row (Figures (c) and (d)) shows the sample results of the multiple-persons case in the Greater Tokyo
Area. Here, people’s movements of the first 10 minutes were given, and then our model predicted their
following movements in the next 30 minutes.

Figure 11 shows the visualization of our mobility prediction results by using the
transportation mode information. Given the persons’ current observed movements
(blue lines) and their important places, their mobility and transportation mode were
predicted as the colorful lines (e.g., orange line for by car, red line for by walk) as shown
in Figure 11(b). The first row (Figures 11(a) and (b)) shows the comparison of single-
person results between transportation mode information using and nontransportation
mode information using. From this figure, we can see that the transportation mode in-
formation makes the prediction results more reasonable. The second row (Figures 11(c)
and (d)) shows the sample results of the multiple-persons case in the Greater Tokyo
Area. Here, people’s movements of the first 10 minutes were given, and then our model
predicted their following movements in the next 30 minutes.

7.3. Visualization of Simulation Results

To simulate human mobility following disasters, users first need to select the important
places on the map and then input the disaster information (e.g., occurrence time,
earthquake hypocentral location, earthquake intensity at this region, damage level,
etc.), and our simulator can then automatically simulate their possible movements and
transportation mode. To show the performance, here, we used the real information in
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Fig. 12. Visualization of simulation results.1 This figure shows the example of our simulation results
for Osaka. Here, we use the pretrained urban mobility model to plan the traveling routes and transportation
mode. Figure (a) shows the urban mobility graph of Osaka. Figure (b) shows the example of simulation
results for the single person. Figures (c) and (d) show the example of simulation results for a large number
of persons in Osaka. Here, the original start positions of people were given, and then we simulated their
following movements and transportation mode.

the testing dataset as the input. Figure 12 shows the sample results of our simulator.
From Figure 12(b), we can see that our simulation results are very similar to the real
movements of this person following a specific disaster. The second row (Figures 12(c)
and (d)) shows the sample results of the multiple-persons case in Osaka. Here, the
original start positions of people were given, and then we simulated their following
movements and transportation mode.

7.4. Evaluation of Behavior Prediction

Evaluation metrics: To evaluate the performance of different predictive models, we
followed Cho et al. [2011] and used the following evaluation metrics: (1) Predictive
accuracy: This metric measures the overall accuracy of different predictive models;
that is, given the time of day of GPS trajectories in the test set, how accurately each
model can predict the exact place where the people will go. For instance, an accuracy
of 0.7 means that 70% of the time, the model correctly predicts the exact places where
people will go. (2) Log-likelihood: This metric measures the average log-likelihood of
the GPS trajectories in the test set, which can measure how well the test set fits the
model. (3) Expected distance error: This metric does not insist on predicting the exact
places. Furthermore, it takes into account the spatial proximity of predictions to the
actual destination. For more details and definitions on this metric, please refer to Cho
et al. [2011].
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Fig. 13. Evaluation of behavior prediction. This figure shows the performance evaluation of four meth-
ods with three different evaluation metrics. The first row shows the evaluation of people in the Greater
Tokyo Area, and the second row shows the case of people in Fukushima, Miyagi, and Iwate prefectures.

Baseline models: We considered three baseline models for comparison: (1) Most
Frequented Location Model (MF): For every hour of the day, this model predicts the most
likely (most frequently visited) place for a particular person. Despite its simplicity, this
is a strong baseline model. Lu et al. [2012] also used this model to predict population
mobility after the 2010 Haitian earthquake. (2) Gaussian Model (GM): This model
has been proposed by Gonzalez et al. [2008], and it models human movements as a
stochastic process centered around a single point. This model is static in time and
mainly captures the scale of a person’s movements. (3) Periodic Mobility Model (PMM):
This model is built on the intuition that most human mobility is based on periodic
movement among a small set of locations. As a state-of-the-art method, it has been
proposed by Cho et al. [2011] to predict the locations and dynamics of future human
movements.

Performance evaluation: We compared the performance of our model with that of
the baselines, as shown in Figure 13. From this figure, we can see that our approach
achieved much better performance than the other competing methods in our dataset.
In addition, we can see that on the first 3 days after the earthquake, the performance
of PMM for people in the Greater Tokyo Area is similar to that of our approach (Fig-
ure 13(a)); however, our method outperforms PMM considerably at other times. This
might be because on the first 3 days after the earthquake, many people’s mobility in the
Greater Tokyo Area was the same as their mobility during normal times (e.g., working
at daytime and going home at night). However, on the following days, people began to
more fully understand the seriousness of the Fukushima nuclear accident, and many of
them chose to evacuate to other places. Obviously, our approach is powerful for predict-
ing human disaster behaviors and emergency mobility than these competing methods
that are used for predicting human mobility during normal times.

7.5. Evaluation of Mobility Prediction

To evaluate the accuracy of the predictive paths of people, we used the three differ-
ent metrics discussed in Ziebart et al. [2008]. The first evaluates the amount of route
distance shared between the model’s most likely path estimate and the actual demon-
strated path. The second measures what percentage of the testing paths match at least
90% (distance) with the predicted one. The third evaluates the average log probability
of paths in the training set under the given model. Meanwhile, we chose the approach
developed by Song et al. [2014a] as the first baseline model. This approach also uses the
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Table I. Evaluation of Mobility Prediction

Algorithm Matching 90% Matching Log-Prob
Our method (transportation mode using) (Greater Tokyo Area) 82.75% 61.69% −6.17

Method of Song et al. [2014b] (Greater Tokyo Area) 80.68% 58.73% −6.53
Method of Song et al. [2014a] (Greater Tokyo Area) 72.76% 51.27% −7.15

Our method (transportation mode using) (other three prefectures) 86.22% 67.38% −5.31
Method of Song et al. [2014b] (other three prefectures) 83.39% 63.36% −5.97
Method of Song et al. [2014a] (other three prefectures) 73.28% 52.28% −7.33

Table II. Evaluation of Simulation Accuracy

Algorithm Matching 90% Matching Log-Prob
Our model (transportation mode using) 69.52% 49.31% −6.72

Model of Song et al. [2015] (nontransportation mode) 65.26% 45.33% −7.13
MF 58.23% 39.62% −7.97
GM 51.22% 33.16% −8.21

PMM 63.18% 42.69% −7.33

population mobility graph to predict possible population movements after a large-scale
disaster; however, it does not take into account the important places of people and
some important disaster states. On the other hand, we chose the previous version of
our model [Song et al. 2014b], which did not consider transportation mode information,
as the second baseline model.

Table I shows the performance of the three models. We can see that our method
outperforms the method proposed by Song et al. [2014a] by 9.99% to 15.10%. In addition,
we can see that the transportation mode information improves the mobility prediction
accuracy, and it outperforms our previous models [Song et al. 2014b] by 2.07% to 4.02%.

7.6. Evaluation of Simulation Accuracy

To evaluate the accuracy of the simulation model, we used the same metrics as those
discussed in Section 7.5: distance match, 90% match, and average log probability.
Meanwhile, we considered the same baseline models as those discussed in Section 7.4
for comparison: Most Frequented Location Model (MF), Gaussian Model (GM), Periodic
Mobility Model (PMM), and our previous model [Song et al. 2015] that did not consider
transportation mode information. For training these baseline models, we retrieved the
GPS data in 3 months from our mobility database by using the person ID in the testing
set, and we used them to train the final model. Then, we used these baseline models
to predict a person’s next visited place following the disaster, and then we planned the
final traveling routes of people in the transportation network.

We compared the performance of our model with those of the baselines, as shown
in Table II. Most of the baseline models (e.g., MF, GM, and PMM) are trained by a
particular person’s historical movements, and they can only be applied to a specific
person. In contrast, our model is a general mobility model, and it can be applied to any
person. From this table, we can see that our model has much better performance than
MF, GM, and PMM. Obviously, our simulator is more powerful for simulating human
mobility during disasters than these competing methods that are used for predicting or
simulating human mobility during normal times. In addition, compared to the previous
version of our approach [Song et al. 2015], the transportation mode information and
multimodal route planning significantly improve the simulation accuracy.

8. CONCLUSION

In this article, we collect big and heterogeneous data to capture and analyze human
mobility following different disasters in Japan, and we develop a model of human
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mobility for predicting and simulating human movements following natural disasters.
The experimental results and validations demonstrate the efficiency of our behavior
model and suggest that human mobility following natural disasters may be more easily
predicted or simulated than previously thought.

We note several limitations within our study. The population mobility database used
is constructed from mobile devices and does not incorporate data from some repre-
sentative portions of the population (i.e., people who do not own mobile devices or do
not register for a GPS service cannot be incorporated into this study). Additionally,
the data are slightly biased toward younger age groups, who are more likely to own
GPS-based equipment than older age groups. However, we are confident that the data,
which offers movement behaviors for the approximately 1.6 million people included in
the database, are reflective of general movement patterns in the country following a
composite disaster. A second limitation of our study is related to the training process.
Because our training data was very huge, we found that with the increasing amount of
training data, the performance of our model will face some bottlenecks. In the future,
we will try to build up a Deep Belief Net and utilize deep learning technology to model
a large number of human emergency movements.
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