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Abstract—We categorize this research in terms of its contribution to both graph theory and computer vision. From the theoretical

perspective, this study can be considered as the first attempt to formulate the idea of mining maximal frequent subgraphs in the

challenging domain of messy visual data, and as a conceptual extension to the unsupervised learning of graph matching. We define a

soft attributed pattern (SAP) to represent the common subgraph pattern among a set of attributed relational graphs (ARGs),

considering both their structure and attributes. Regarding the differences between ARGs with fuzzy attributes and conventional labeled

graphs, we propose a new mining strategy that directly extracts the SAP with the maximal graph size without applying node

enumeration. Given an initial graph template and a number of ARGs, we develop an unsupervised method to modify the graph template

into the maximal-size SAP. From a practical perspective, this research develops a general platform for learning the category model (i.e.,

the SAP) from cluttered visual data (i.e., the ARGs) without labeling “what is where,” thereby opening the possibility for a series of

applications in the era of big visual data. Experiments demonstrate the superior performance of the proposed method on RGB/RGB-D

images and videos.

Index Terms—Graph mining, graph matching, big visual data, attributed relational graphs, ubiquitous learning

Ç

1 INTRODUCTION

IN the current era of big data, is it still necessary to label a
set of object samples for each category and train category

models individually? In this section, we address this ques-
tion by identifying our research in terms of both graph
matching and graph mining, and introduce its contributions
to ubiquitous learning from big visual data.

1.1 Views of Graph Matching & Task Introduction

In the field of computer vision, attributed relational graphs
(ARGs) are widely used. As shown in Fig. 1, ARGs can rep-
resent either scenes or objects, using the local and pairwise
attributes to describe parts features and the spatial relation-
ship between the parts, respectively. The goal attributed
graph matching is to estimate node correspondences
between two ARGs based on the similarity of local and pair-
wise attributes, e.g. mapping a small ARG template of an
object to a large ARG of an image.

In the general case,1 the graph matching of ARGs is typi-
cally formulated as a quadratic assignment problem (QAP),
which requires global optimization.

Recently, a number of approaches for “learning graph
matching” have been proposed. These train models or
matching parameters, and their superior performance in

terms of improving matching accuracy has been demon-
strated. Indeed, the concept of learning graph matching has
been extended. Generally speaking, we can categorize these
approaches as supervised methods [2], [3], [4], [5], [6] and
unsupervised methods [5], [7]. Unsupervised methods do
not require the matching correspondences of target objects
in the ARGs to be manually labeled for training, whereas
supervised methods require such labeling. In this study, we
focus on unsupervised approaches, which are analogous to
automatic category modeling using big visual data.

In this paper, we propose a new concept of learning
graph matching that focuses on the discovery of missing2

graph parts (nodes) of the common subgraph pattern. As
shown in Fig. 2, given a graph template and a number of
ARGs, our method simultaneously 1) discovers missing
parts of the template, 2) eliminates redundant parts, and
3) adjusts its attributes in an unsupervised manner, so as
to grow the initial template into the common subgraph
pattern among these ARGs, and achieve good matching
performance. In other words, this technique provides a
general solution to recovering full-size graphical patterns
from object fragments, as shown in Fig. 3. Obviously, this
is orthogonal to conventional unsupervised approaches
that learn attribute weights [5] and refine template struc-
tures [7], [8].

1.2 Views of Graph Mining & the Proposed Method

From another perspective, the proposed method mines
maximal-size3 subgraph patterns, which is one of the core
branches of graph mining. Many related techniques have

1. Unlike ARGs in [1], local attributes in ARGs may not, in general,
be sufficiently distinguished to independently provide matching corre-
spondences or matching candidates between ARGs without global
optimization.
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2. The discovery of missing parts is the key to growing the current
fragmentary subgraph pattern to the maximal size. The nodes in differ-
ent ARGs, which correspond to the missing parts, should have similar
unary and pairwise attributes, so as to maintain the fuzziness of the
subgraph pattern.

3. The word “maximal” indicates that the target subgraph pattern
should be grown until the graph size of the pattern reaches a
maximum.
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been extensively investigated and developed, including
maximal frequent subgraph (MFS) extraction and maximal
clique mining.

However, the mining of maximal subgraph patterns
encounters a bottleneck in the strict constraints of the target
graphs. Pioneering studies have mainly considered “labeled
graphs” (those that have distinct node labels or edge labels)
and graphs with a list of pre-determined potential node cor-
respondence candidates. Such graphs are usually generated
from tabular data and have distinguishing structures.

By contrast, when we extend this topic to the messy visual
data collected from real-world situations, both the definition
of the subgraph pattern and the mining method become
much more challenging. As shown in Fig. 2, people use
“fuzzier1” ARGs with varied attributes to model scenes/
objects with great intra-category variations. Without distin-
guishing structures or node/edge labels, conventional judg-
ments of a graph isomorphism between the pattern and these
target subgraphs can no longer be applied to such ARGs.
Alternatively, we redefine the subgraph pattern as a “soft”
attributed pattern (SAP), which 1) uses the graph matching
technique to compute the correspondences between the

pattern and the target subgraphs embedded in the ARGs,
and 2) uses a threshold to limit its attribute differences from
the target subgraphs, thereby maintaining the pattern’s sig-
nificance. Consequently, the mining process is to extract the
SAPwith themaximal graph size among theARGs.

1.2.1 Chicken-and-Egg Problem

Conventional approaches oriented to labeled graphs mainly
use node enumeration (or node search) strategies to
discover new nodes for the pattern. However, these
approaches are all hampered4 in the graph domain of
ARGs. Therefore, in this paper, we design a new mining
methodology that directly discovers new pattern nodes
from ARGs without any node enumeration.

Node discovery from ARGs is a chicken-and-egg prob-
lem. The two interdependent terms are: 1) the estimation of
the unary and pairwise attributes related to the new node,
and 2) the determination of the new node’s matching assign-
ments to different ARGs. The conventional idea is that we
should first discover the target nodes hidden in different
ARGs that share similar unary and pairwise attributes. Then,
we can set the new pattern node to represent this attribute
pattern. However, the node correspondences between the
target subgraphs in different ARGs can only be computed by
graph matching between the SAP and ARGs, which requires
the prior knowledge of the attributes of the new node. In fact,
these two terms are reflected in the definition of the SAP (i.e.,
in Definitions 2a, 2b), whichwill be explained later.

In this paper, we demonstrate that when we use the
typical squared differences to define the dissimilarity
between the SAP and its target subgraphs, we can obtain
an approximate closed-form expression of node attributes
w.r.t. node matching assignments. This enables us to
simultaneously determine the attributes and matches of
the new pattern node.

1.3 General Platform for Model Mining from Big
Visual Data

As shown in Fig. 4, we consider this study to describe a
method of “model mining from big visual data,” rather

Fig. 1. If we represent an image using an ARG, the subgraph pattern (with
attribute variations) corresponds to themodel of the common objects.

Fig. 2. Overview from the perspective of graph theory. We define and
extract the soft attributed pattern (SAP) from ARGs, and maximize the
size of the SAP. This study overcomes a key challenge in graph mining,
as we formulate the idea of mining maximal-size common subgraphs in
the challenging graph domain of ARGs. This method also extends the
concept of unsupervised learning for graph matching. Given an initial
graph template and a set of large ARGs, we simultaneously discover the
missing nodes, delete redundant nodes, and train attributes, so as to
obtain a graphical model with good matching performance.

Fig. 3. Structure modification from different graph templates (object frag-
ments) to SAPs (fuzziness t ¼ 0:4).

4. The conventional strategy of node enumeration cannot ensure the
algorithm’s stability, because without distinct node labels, the enumer-
ated nodes in each specific ARG may have heavily biased attributes.
Moreover, owing to the existence of the dummy matching choice (“�”),
we cannot limit the node enumeration within any single ARG to reduce
the computational load.
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than the conventional “model training.” When faced with
big visual data, the main bottleneck is the difficulty of
model learning from ubiquitous images. If it is necessary to
manually prepare a set of training images for each category,
the considerable cost of human labeling may hamper the
ultimate goal of building an all-embracing base to provide
an object-level visual knowledge. Therefore, an efficient
way of mining category models from ubiquitous images
without labeling “what is where” would be valuable.

However, messy visual data collected from complex real-
world situations or the internet involves almost all the typi-
cal challenges in computer vision. Target objects are usually
small and randomly located in cluttered scenes, with con-
siderable intra-category variations in texture, pose, rotation,
and scale.

Therefore, we propose this graph-mining method as a
general platform for learning from ubiquitous visual data.
Visual data, such as RGB and RGB-D images, 3D point
clouds, and video frames, can all be represented by ARGs;
thus, objects in the target category within these images cor-
respond to the common subgraphs embedded in the ARGs.
The intra-category variations can be formulated as attribute
variations, and the maximal-size SAP can be considered as
the category model. In this case, the mining of the maximal-
size SAP can be regarded as an elegant way of discovering
common objects from unlabeled visual data.

In addition to mining category models, our method also
simultaneously detects object parts. Such part-level object
detection can be regarded as the automatic labeling of train-
ing samples in ubiquitous images, and is thereby able to
guide the training of many visual tasks, such as object rec-
ognition, tracking, and segmentation. For example, based
on this method, we can use part-level labeling to learn the
knowledge for single-view 3D reconstruction from infor-
mally collected RGB-D images, as reported in [9].

1.4 Contributions

The contributions of this paper can be summarized as
follows. First, we redefine the concept of unsupervised

learning for graph matching in order to idealize the spirit of
training graphical structures. To the best of our knowledge,
this study is the first attempt to encode the discovery of
missing parts into the learning of graph matching. Second,
in terms of graph mining, this research extends the mining
of maximal-size subgraph patterns to challenging visual
data. We demonstrate the existence of a direct solution to
graph mining that does not require computationally inten-
sive node enumeration. Both the pattern definition and min-
ing strategy for visual data are totally different from
pioneering approaches. Third, the proposed technique can
be understood as a platform for model learning from big
visual data, which automatically labels common objects in
ubiquitous images. This can be used to guide many
extended visual tasks.

The rest of this paper is organized as follows. The fol-
lowing section discusses some related work. Section 3
defines the target problem of this research, and Section 4
presents the detailed algorithm. In Section 5, we describe
the design and results of experiments to evaluate the
algorithm. Finally, the overall study is summarized in
Section 6.

A preliminary version of this paper appeared in [10].

2 RELATED WORK

2.1 Views of Graph Matching

Given a graph template and a number of ARGs, conven-
tional algorithms for learning graph matching [3], [4], [5],
[6] mainly train the matching parameters, and Cho
et al. [2] proposed to learn a model for matching. Most of
these are supervised methods that require the target sub-
graphs in ARGs to be labeled for training. Leordeanu
et al. [5] proposed the first unsupervised method that did
not require such manual labeling. In [7], the structural
refinement was considered as part of the unsupervised
learning for graph matching. A similar idea was utilized
to mine spatial patterns from ARGs [11]. Cho and Lee [8]
matched two ARGs and simultaneously learned the node
linkage of the two matched subgraphs, which can also be
regarded as structural refinement. Essentially, structural
refinement deletes “bad” nodes from the graph template,
rather than recovering the prototype graphical patterns.
Therefore, to perfect the learning of a graph structure, we
encode the challenging task, i.e., the discovery of missing
parts from large ARGs, into our definition of learning
graph matching.

2.2 Views of Graph Mining

In the field of graph mining (reviewed in [12]), the con-
cept of mining maximal subgraph patterns has been
realized by MFS extraction [13] and maximal clique min-
ing [14], [15]. As shown in Fig. 2(bottom), MFS extrac-
tion [1], [13], [16] is based on graph isomorphisms, and
usually requires 1) the distinguishing (topological) struc-
ture of the subgraph pattern, and 2) pre-defined distinct
node/edge labels or potential inter-graph node corre-
spondences determined by local consistency. Thus, node
enumeration is used to mine the MFS. The distinct graph
structure and labels are used to prune the enumeration
range, thereby avoiding possible NP-hard computation.

Fig. 4. Overview from the perspective of applicability. We propose a plat-
form for model learning and sample labeling using big visual data, which
has a wide range of potential applications.
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Similarly, maximal clique mining [14], [15], [17], [18]
mainly extracts a dense graph clique to maintain geomet-
ric consistency during matching. Some studies [19], [20]
were proposed to formulate the softness of the clique pat-
tern. However, for the task of mining from fuzzy visual
data collected from real-world situations, clique mining
methods did not provide a solid way to ensure robustness
to attribute variations and still required distinguishing
local features to pre-determine local matching correspon-
dence candidates among the graphs.

In contrast, fuzzily defined ARGs usually have neither
distinguishing structures nor distinct node labels. In many
applications, nodes are connected in a uniform style. The
ARGs may even contain only pairwise attributes without
local attributes. Thus, we require a new mining strategy
(without node enumeration) to deal with the ARGs. Consid-
ering the fuzzy condition,1 the matching between ARGs can
only be solved by global optimization. Thus, we redefine
the common subgraph pattern as the SAP based on the
attributes’ consistency, rather than a graph isomorphism
w.r.t. the structure and labels.

Furthermore, if we do not strictly limit our discussions
to graph theory, [21], [22] can be considered as pioneer-
ing works that discovered common structural patterns
within images by estimating common graph structures.
In [23], [24], [25], [26], [27], [28], common objects were
extracted from images based on techniques related to
maximal clique mining [14], [15]. However, these studies
were mainly designed with some data-driven techniques
oriented to their own applications. They thereby require
target objects to have little texture variations, thus
pre-determining a set of potential inter-image matching
correspondences using local features. In contrast, our
approach is formulated in the theory system of attributed
graph matching. Thus, it has a much wider range of
computer-vision applications, as shown in the four
experiments.

2.3 Views of Visual Mining from Big Data

The concept of visual mining is extensive. For example,
deep learning [29] has been applied to unsupervised feature
learning for image recognition and produced a clear
improvement in performance. However, in this research,

we limit our discussion to the concept of “object-level”
visual mining, i.e., mining knowledge of small objects from
large and cluttered images.

Some pioneering studies, including those on object dis-
covery [30] and co-segmentation [31], [32], [33], can be
thought of as a kind of object-level visual mining. However,
these have some pre-requisites for the target objects (mainly
based on texture information). It is difficult for them to
encode detailed structural knowledge. Thus, they are all
sensitive to texture variations. Our previous work [34], [35]
mined object patterns from 3D point clouds. [36], [37]
extracted object structural knowledge from unlabeled
images, which used relatively reliable structural informa-
tion in RGB-D images to guide the model learning and
applied the learned model to ordinary RGB images. In con-
trast, in this paper, we focus on a more general case. We
define the problem of object-level visual mining and list its
challenges in Table 1. Our method can be regarded as a gen-
eral solution to these challenges.

3 PROBLEM FORMULATION

Definition 1 (ARG). An ARG G is a three element tuple
G ¼ ðV; FV ; FV�V Þ, where V is the node set. Undirected edges
connect each pair of nodes to form a complete graph. G
contains NP types of local attributes for each node and NQ

types of pairwise attributes for each edge. FV ¼ fF s
i js 2 V;

i ¼ 1; 2; . . . ; NPg and FV�V ¼ fF st
j js; t 2 V; s 6¼ t; j ¼ 1;

2; . . . ; NQg denote the local and pairwise attribute sets,
respectively. Each attribute corresponds to a feature vector.

Actually, in this definition, the ARG is defined as a fully
connected graph, but it can be extended to encode knowl-
edge of incomplete graphs with the form G� ¼ ðV;E;
FV ; FEÞ. We can transform G� to our fully connected ARG

by setting a pairwise attribute F st
j ¼ 1 if edge ðs; tÞ 2 E, and

0 otherwise.
Attributed Graph Matching. Given a set of ARGs GS ¼

fG0kjk ¼ 1; 2; . . . ; Ng, G0k ¼ ðVk; FVk ; FVk�VkÞ, the graph tem-

plate G ¼ ðV; FV ; FV�V Þ represents an attribute pattern
among the ARGs in GS. Note that G is not exactly embed-
ded in any G0k. The matching between G and G0k aims to
compute a set of matching assignments between G and G0k,
denoted by xk ¼ fxk

s js 2 V g. Each matching assignment

xks 2 Vk [ f�g maps node s in G to either a node in G0k or a
dummy choice �. � is used when some nodes in G do not
exist in G0k. The graph matching is formulated as a typical
QAP with the following energy function:

E�xkjG;G0k
� ¼X

s2V
Ps

�
xk
s jG;G0k

�þ X
ðs;tÞ2V;s 6¼t

Qst

�
xk
s; x

k
t jG;G0k

�
:

(1)

Function EðxkjG;G0kÞ indicates the total matching energy.
The functions Psð�Þ and Qstð�; �Þ denote matching penal-
ties for local and pairwise attributes. Various graph
matching optimization techniques can solve the energy

minimization of EðxkjG;G0kÞ, and we choose TRW-S [38].
In this study, matching penalties are defined using
squared differences,

TABLE 1
Simultaneous Modeling of All Typical Challenges Using

Attributed Graph Mining

Challenges Modeled as

Small-size objects are
unaligned in large
images.

Automatic object detection in
large images is modeled as a
graph-matching problem.

Intra-category
texture variations

Local features of object parts are
modeled as unary attributes.
Scale-independent or rotation-
independent measurements of the
spatial relationship between each
pair of parts are modeled as pairwise
attributes. These intra-category
variations can be modeled as the
attribute variations.

Intra-category
rotation variations
Deformable
structure of objects
Illumination changes
Scale variations
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Ps

�
xk
s jG;G0k

� ¼ PNP
i¼1 w

P
i kF s

i � F xks
i k2; xk

s 2 Vk

P�; xk
s ¼ �

(
(2a)

Qst

�
xk
s; x

k
t jG;G0k

� ¼
PNQ

j¼1 w
Q
j
kF st

j
�Fxksx

k
t

j
k2

kV k�1 ; xks 6¼ xk
t 2 Vk

þ1; xks ¼ xk
t 2 Vk

Q�
kV k�1 ; xks orx

k
t ¼ �;

8>><>>:
(2b)

where P� and Q� are relatively large constant penalties for
matching to the dummy node � in the case of occlusions.
k � k is the Euclidean norm. We use infinite penalties to

avoid many-to-one matching assignments. wP
i and wQ

j

denote the weights for local and pairwise attribute differen-
ces. We require the pairwise penalty to be symmetric, i.e.,
Qstðxs; xtjG;G0kÞ ¼ Qtsðxt; xsjG;G0kÞ, and to be normalized5

by ðkV k � 1Þ. Penalties P� and Q� and attribute weights

fwP
i g and fwQ

j g can be manually set or automatically mined,

which will be introduced in Section 4.3.

Definition 2 (SAP). Given a set of ARGs GS ¼ fG0kjk ¼
1; 2; . . . ; Ng and a threshold t, a graph template
G ¼ ðV; FV ; FV�V Þ is an SAP among the ARGs, iff

(a) x̂k ¼ argminxkEðxkjG;G0kÞ; we set x̂k ¼ fxk
s js 2 V;

k ¼ 1; 2; . . . ; Ng;
(b) ðFV ; FV�V Þ  argminFV ;FV�V

PN
k¼1 Eðx̂kjG;G0kÞ;

(c) 8s 2 V , Esðfx̂kgjG;GSÞ � t;
where Esðfx̂kgjG;GSÞ is defined as the average matching

penalty of node s in G among all the ARGs in GS.

Esðfx̂kgjG;GSÞ

¼ 1

N

XN
k¼1

Ps

�
x̂k
s jG;G0k

�þ X
t2V;t 6¼s

Qst

�
x̂k
s; x̂

k
t jG;G0k

�" #
:

Maximal SAP. The definition of the SAP can be visual-
ized in Fig. 5, and we introduce the physical meaning of
each item in Definition 2, as follows.

Condition (a) directly matches the SAP G to each ARG G0k
in GS to determine the SAP’s corresponding subgraphs
embedded in G0k.

Condition (b) trains the local and pairwise attributes of the
SAP G. G should represent the average attribute pattern
among all its corresponding subgraphs determined by Con-
dition (a). In other words, the SAP’s attributes (FV ; FV�V )
should minimize the total matching energy, given all the
matches between G and the ARGs in GS.

Condition (c) sets a threshold t to control the fuzziness of
G. We require each node s in the SAP to have a low average
matching penalty among all the matches to ensure that all
the SAP’s nodes represent the common parts in the ARGs.

With these preliminaries, our goal is to mine the SAP G with
maximal graph size kV k, i.e. the largest common subgraph
pattern among the ARGs.

4 PROPOSED ALGORITHM

To extract a maximal SAP, the initial graph template G is
modified in the following expectation-maximization (EM)
framework. In each iteration, we use the current G to esti-

mate the matching assignments in the ARGs in GS, fx̂kg,
and then use fx̂kg to update the attribute sets of FV and
FV�V of G. The new FV and FV�V are finally used as feed-
back to modify the structure of G by (probably) discovering
a missing node from the ARGs, or deleting a redundant
one. Thus, the initial graph template G is iteratively modi-
fied to the maximal SAP (see Fig. 3).

4.1 Attribute Estimation

First, we use Definition 2a to obtain matching assignments

fx̂kg for the current G. Then, given fx̂kg, we can directly
solve Definition 2b by estimating G’s attributes as the arith-
metic mean of the attributes of all corresponding subgraphs
in the ARGs, which minimizes the squared Euclidean dis-

tance in
PN

k¼1 Eðx̂kjG;G0kÞ:

F s
i ¼ mean

k:dðx̂ks Þ¼1
F x̂ks

i ; F st
i ¼ mean

k:dðx̂ks Þdðx̂kt Þ¼1
F x̂ks x̂

k
t

i ; (3)

where dð�Þ indicates whether a node in G is matched to �. If

x̂ks ¼ �, dðx̂ksÞ is set to 0; otherwise 1.

4.2 Structure Modification

We grow the initial G into the maximal SAP using a greedy
strategy (see Fig. 6). In each iteration, we delete the
“worst” (not well matched to the ARGs) node from G, and
insert the “most probable” missing node. Both the inser-
tion and elimination depend on the unified requirement
for the local matching quality in Definition 2c. The worst

node is determined as ŝ ¼ argmaxs2V Esðfx̂kgjG;GSÞ in G.

If Eŝðfx̂kgj G;GSÞ > t, we delete ŝ from G; otherwise, this
node is retained.

Actually, the core task of structure modification is to dis-
cover new nodes for the SAP. It requires us to determine
both the attributes related to the new pattern node and its
matching assignments to all the ARGs, which is a chicken-
and-egg problem, as analyzed in Section 1.2. Thus, we have
developed an efficient solution that simultaneously deter-
mines the attributes and matching assignments of the

Fig. 5. Visualization of the SAP in Definition 2. Colors in ARGs denote
different local and pairwise attributes. Note that in graph matching, we
use pairwise attributes (edge colors), rather than simply geometric dis-
tance between nodes (although such distances can be used as one of
theNQ types of pairwise attributes).

5. Node insertion (or delete) will increase (or decrease) the overall
weights for pairwise attributes in both the graph matching (1) and the
calculation of Esðfx̂kgjG;GSÞ, causing an unstable performance. To pre-
vent such effects, we normalizeQstðxs; xtjG;G0kÞ.
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missing node. Let y be the missing node of G, and let

Fy ¼ fF y
i j1 � i � NPg and Ffyg�V ¼ fF yt

j ;F ty
j jt 2 V; 1 � j �

NQg denote the local and pairwise attribute sets related to y.
Consequently, in ARG G0k, the node matched by y can be

denoted by xk
y 2 Vk n x̂k (x̂k ¼ fx̂k

s js 2 V g). Thus, y’s match-

ing assignments in all the ARGs are denoted by

fxk
yjk ¼ 1; 2; ::; Ng.
We use Gnew ¼ ðV new; FV new ; FV new�V newÞ to denote the

dummy enlarged model after node insertion. We define the
notation for Gnew in the same way as that for G:
V new ¼ V [ fyg, FV new ¼ FV [ Fy, FV new�V new ¼ FV�V[ Ffyg�V ,
xknew ¼ x̂k [ fxk

yg. Thus, the local matching penalty of y is

transformed to

EyðfxknewgjGnew;GSÞ ¼ Py þ
X

t2VQyt

Py ¼
XN

k¼1Pyðxk
yjGnew;G0kÞ=N

Qyt ¼
XN

k¼1Qytðxk
y; x̂

k
t jGnew;G0kÞ=N:

(4)

The goal of node insertion is transformed to

argmin
Fy;Ffyg�V

XN

k¼1Eðx
k
newjGnew;G0kÞ (5a)

argmin
fxkyg

EyðfxknewgjGnew;GSÞ: (5b)

These two equations correspond to Definitions 2a, 2b. We
should simultaneously estimate the matching assignments
(fxk

yg) and attributes (Fy; Ffyg�V ) of y that minimize the over-
all matching energy. Because the new node y should be well
matched to most of the ARGs, we tentatively ignore the pos-
sibility of matching y to �, so as to simplify the calculation
(inaccuracy caused by this approximation can be corrected
in further iterations):

8k ¼ 1; 2; . . . ; N; d
�
xk
y

� ¼ 1: (6)

Thus, as in (3), we use the arithmetic mean to minimize
the squared Euclidean distance in the matching energy,
as the solution to (5a). Considering dðxk

yÞ ¼ 1, attributes in

Fy and Ffyg�V can be represented as F y
i ¼

PN
k¼1F

xky
i =N ,

F yt
i ¼ meank:dðx̂kt Þ¼1

F xkyx̂
k
t

i , and F ty
i ¼ meank:dðx̂kt Þ¼1

F x̂kt x
k
y

i .

We substitute F y
i and F yt

i into Py and Qyt in (4). Consid-

ering the identity
PN

u¼1 kau � 1
N

PN
v¼1 avk2 ¼ 1

2N

P
1�u;v�N

kau � avk2, we demonstrate that (5b) can be transformed as

argmin
fxkyg

Ey

�fxknewgjGnew;GS
� ¼ argmin

fxkyg

�
Py þ

X
t2VQyt

�
¼ argmin

fxkyg

X
1�k;l�NMkl

�
xk
y; x

l
y

�
;

where Mkl

�
xky; x

l
y

� ¼ 1

2N2

XNP

i¼1
wP

i kF
xky
i � F

xly
i k2

þ
X

t2V :dðx̂kt Þdðx̂ltÞ¼1

PNQ

i¼1 w
Q
i kF

xkyx̂
k
t

i � F xlyx̂
l
t

i k2
2kV kNP

j dðx̂j
tÞ

:

(7)

Thus, the problem of (5b) is transformed to a QAP, which
can be directly solved using a Markov random field (MRF).
As shown in Fig. 7, the ARGs are connected to each other to
construct the MRF and determine y’s matching assignments

fxk
yg. In this study, we use TRW-S [38] to solve the energy

minimization of the MRF. We then compute y’s attributes Fy
and Ffyg�V by substituting fxk

yg into (3). If Eyðfxknewgj
Gnew;GSÞ � t, we replace G by the enlarged graph template
Gnew.

4.3 Matching Parameter Estimation

In addition to graph mining, we also propose a method to
train matching parameters in G, including attribute weights

(i.e., fwP
i g and fwQ

j g) and penalties for � (i.e.,P� and Q�).

Under the maximum entropy principle, given the optimal

matching assignments x̂k mapping G to G0k, we can formu-
late the probability of the matched subgraph as

P ðx̂kjW Þ ¼ 1

ZkðWÞ exp
�� Eðx̂kjG;G0kÞ

�
; (8)

where W ¼ fwP
i ji ¼ 1; 2; . . . ; NPg [ fwQ

i jj ¼ 1; 2; . . . ; NQg,
and ZkðWÞ ¼

P
xk exp½�EðxkjG;G0kÞ=kV k�. To simply the cal-

culation, we assume that good matches can only be found in

the neighborhood of the optimal one x̂k, and approximate
ZkðW Þ as

ZkðWÞ 	
X
s2V

X
xks2Vk

exp
�� Eð exkjG;G0kÞ

����e
xks¼xks ;8t 6¼s;exkt¼x̂kt : (9)

Fig. 6. Algorithm flowchart.

Fig. 7. Discovery of the missing node y in G. We have demonstrated a
direct solution to the determination of y’s matching assignments fxkyg in
the N ARGs that minimize Eyðfxk

newgjGnew;GSÞ, without requiring any
prior knowledge of y’s attributes. The ARGs are connected to each other
to construct a Markov random field that solves this problem.
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The objective of parameter estimation is to maximize the
probability of all the matches to theN ARGs,

argmax
W

P ðfx̂kgjWÞ; P ðfx̂kgjWÞ ¼
YN

k¼1P ðx̂
kjW Þ: (10)

We use the steepest descent method to solve this equation,
i.e., W  W þ hrW logP ðfx̂kgjWÞ. When W has been

trained, we normalize it as W  W=kWk1, which will not

affect the graph matching in (1). We can further estimate P�

and Q� as

P�  �Pþ þ að �P� � �PþÞ; Q�  �Qþ þ að �Q� � �QþÞ;
�Pþ ¼ mean1�k�N;s2V Psðx̂k

s jG;G0kÞ;
�Qþ ¼ mean1�k�N;s2V

X
t2V;t 6¼sQstðx̂k

s; x̂
k
t jG;G0kÞ

�P� ¼ mean1�k�N;s2V;xks2VkPsðxk
s jG;G0kÞ;

�Q� ¼ mean1�k�N;s2V;xks2Vk
X

t2V;t 6¼sQstðxk
s; x̂

k
t jG;G0kÞ;

(11)

where �Pþ, �Qþ denote the average unary and pairwise

matching penalties in the optimal matches, respectively,

while �P�, �Q� correspond to the penalties for other matching

choices; a > 0 (we set a ¼ 0:5).

5 EXPERIMENTS

The proposed method is applicable in the field of com-
puter vision, enabling the discovery of a general cate-
gory model for image matching when the target objects
are randomly placed in large and cluttered scenes. In
particular, our technique satisfies the condition of rela-
tively weak local attributes for matching. We use differ-
ent experiments to evaluate the proposed method in
different visual tasks.

In Experiments 1 and 2, we test our method for mining
category models (i.e., maximal-size SAPs) from cluttered
RGB-D and RGB images, respectively. The category model
is constructed using object edge segments as graph nodes,
and thus performs well in detecting objects with clear edges.
Then, in Experiment 3, we extend the model-mining task to
more general images, i.e., those collected from the internet
by search engines. Therefore, we propose another ARG
model that takes scale-invariant feature transform (SIFT)
feature points as graph nodes to describe objects in general
images. Finally, in Experiment 4, we further extend the

application to the learning of deformable object models
from videos.

We compare the proposed method with unsupervised
approaches that learn graph matching, although the discov-
ery of missing nodes in the proposed method is orthogonal
to the conventional learning of attribute weights.

5.1 Experiment 1: Mining Edge-Based Models from
Cluttered RGB-D Images

5.1.1 Dataset

We use the category dataset of Kinect RGB-D images [36],
[37], [39], published as a standard RGB-D object dataset6 for
graph-matching-based model learning. This dataset was
applied in [36] and the competing method [7]. The seven
largest categories—notebook PC, drink box, basket, bucket,
sprayer, dustpan, and bicycle—in this dataset contain a suffi-
cient number of RGB-D objects, and are chosen for training.
These images depict cluttered scenes containing objects
with different textures and rotations.

5.1.2 ARG-Based Category Models

As illustrated in Fig. 8, in our previous studies [7], [36], [37],
we designed ARGs to represent objects in RGB-D images.
The category model is mined as the SAP among these
ARGs. The ARGs are designed as follows. We first use an
edge extraction method [40] to extract object edges from
images, and then discretize continuous edges into line seg-
ments as the graph nodes. The technical details of edge seg-
mentation were introduced in [36]. We connect each pair of
graph nodes to construct a complete graph. Two local fea-
tures (NP ¼ 2) and three pairwise attributes (NQ ¼ 3) are
designed to describe local features and the spatial relation-
ship between local parts in images.

The first unary attribute is the histogram of oriented gra-
dients (HoG) feature [41] of two local patches collected at
the line segment terminals of node s, denoted by

F s
1 ¼ ½$A

s ;$
B
s �7. The HoG features [41] are extracted using

Fig. 8. Notation for the ARGs based on line segments of object edges in RGB and RGB-D images [7]. Please see [7], [36] for more details of attribute
settings.

6. This is one of the largest RGB-D object datasets, and fits the
requirements of learning graph matching.

7. Actually, this attribute is affected by the order of the two termi-
nals, but there is no good way to pre-define this order without consider-
ing the terminal order of other nodes. Therefore, we slightly modify the
distance measurement of F s

1 in Equation (2) from kF s
1 �F xks

1 k2 to

minfkF s
1 � ½$A

xks
;$B

xks
�k2; kF s

1 � ½$B
xks
;$A

xks
�k2g. The final terminal order of

each node x̂ks in ARG G0k is determined as that which best matches node
s in G.
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5� 5 cells, each of which covers half of its neighboring cells.
We use four orientation bins (from 0 to 180 degree) to com-
pute the gradient histogram in each cell. Because the patch
is locally collected without significant illumination changes,
we normalize all of the cells within a single block. The sec-

ond unary attribute is given by F s
2 ¼ log l3Ds , where l3Ds is the

spatial length of the line segment of node s. The first of the

three pairwise attributes, F st
1 ¼ u3Dst , denotes the spatial

angle between the line segments of nodes s and t in the 3D
space. For each edge ðs; tÞ, we define the centerline as the
line connecting the centers of the line segments of s and t.
We measure the centerline in a local 3D coordinate system,
independent of the global object rotation, as the relative
spatial translation between two nodes, denoted by cst. Based
on this, the second and third pairwise attributes, i.e.,

F st
2 ¼ kcstk and F st

3 ¼ cst=kcstk, represent the length and
local orientation of the centerline, respectively. We set the

attribute weights as wP
1 ¼ 0:2, wP

2 ¼ 0:1, wQ
j¼1;2;3 ¼ 1, and set

P� and Q� as 0:4 and 0:2, respectively.

5.1.3 Technical Details

We set the maximum iteration number as M ¼ 10. We
apply different thresholds t to the mining processes in
order to mine the category model (i.e., the maximal-size
SAP) with different loose constraints. Larger values of t

indicate a fuzzier level of the maximal-size SAP, and lead
to larger SAPs.

For each setting of t, we perform a series of cross vali-
dations, as in [7], [36]. We pick each of the RGB-D images
from a category to start an individual mining process,
thus obtaining a set of maximal-size SAPs. To extract
each maximal-size SAP, the target object in the selected
image is labeled as the initial graph template. We then
randomly select 2=3 and 1=3 of the remaining images for
training and testing, respectively. We design different
evaluation metrics, which will be introduced in
Section 5.5.2. Based on these metrics, the proposed
method is evaluated using the average performance
among all the mined SAPs.

5.2 Experiment 2: Mining Edge-Based Models from
Cluttered RGB Images

This experiment is similar to Experiment 1. We use the
same dataset of Kinect RGB-D images, but consider only
the RGB channels in this experiment. We design a new type
of ARGs for object representation in the RGB images. We
test the model-mining performance under different values
of t. The performance is evaluated via cross validation as in
Experiment 1.

5.2.1 ARG-Based Category Models

The model uses edge segments as graph nodes, and we use
one unary attribute (nU ¼ 1) and three pairwise attributes

(nP ¼ 3) for the model. The notation is illustrated in Fig. 8.
The only unary attribute is the HoG feature collected at the
terminals of line segments, as for the first unary attribute
for RGB-D images. The first of the three pairwise attributes
between nodes s and t is the angle between their line

segments, denoted by F st
1 ¼ u2Dst . The second pairwise

attribute describes the angles between the centerline and

the node line segments, denoted by F st
2 ¼ ½ucenters ; ucentert �,

where ucenters is the angle between the line segment of s

and the centerline. The third pairwise attribute represents

relative segment lengths, and is denoted by F st
3 ¼

1
lcenter

½l2Ds ; l2Dt �, where l2Ds and lcenter are the lengths of the

line segment of s and the centerline, respectively. The attri-

bute weights are simply set to wP
1 ¼ 0:2 and wQ

j¼1;2;3 ¼ 1. P�

and Q� are set to 0:4 and 0:2, respectively, as in the model
for RGB-D images. These settings are uniformly used for
the model mining of all categories.

5.3 Experiment 3: Mining General Models fromWeb
Images

5.3.1 Web Images

In this experiment, we focus on a more common case of
ubiquitous images, i.e., those collected from the internet by
search engines. We use 10 keywords—“bag,” “boot,”
“camera,” “coca cola,” “glasses,” “hamster,” “iphone,”
“panda,” “sailboat,” “spider”—to collect images for 10 cate-
gories. Each category contains 200 images.

5.3.2 ARG-Based Model for General Images

Generally speaking, the images collected from the internet
are fuzzier than those in our Kinect RGB-D images data-
set [36], [39]. Therefore, we design a new type of ARGs for
image representation that take SIFT points, rather than edge
segments, as graph nodes. These SIFT-based ARGs are ori-
ented to more general images, especially those that do not
contain clear edges. The SIFT points in the images are
detected using different scales. We connect each pair of
points in an image to construct an ARG. Two local features
(NP ¼ 2) and five pairwise attributes (NQ ¼ 5) are designed
to describe local features and the spatial relationship
between local parts in the images. The notation is illustrated
in Fig. 9. The two unary attributes are the 128-dimensional
descriptor and the orientation of the SIFT feature, denoted
by F s

1 ¼ fs and F s
2 ¼ os. The first of the three pairwise attrib-

utes, F st
1 ¼ ust, denotes the spatial angle between the SIFT

orientation of nodes s and t. For each edge ðs; tÞ, we use dst
and ost to represent its length and orientation. We directly

set the second pairwise attribute as F st
2 ¼ ost. The third pair-

wise attribute, F st
3 ¼ ½angleðost; osÞ; angleðost; otÞ�T , is defined

as the angle between edge ðs; tÞ and each SIFT orientation
of nodes s and t. Let ss and st denote the SIFT scales of
nodes s and t. We set the fourth and fifth attributes as

Fig. 9. Notation for the ARGs that take the SIFT feature points as graph
nodes.
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F st
4 ¼ log ðss=stÞ and F st

5 ¼ ½log ðss=dstÞ; log ðst=dstÞ�T , respec-
tively. The attribute weights are set to wP

1 ¼ 3, wP
2 ¼ 1,

wQ
j¼1;2;4 ¼ 0:5, and wQ

j¼3;5 ¼ 1. P� and Q� are set to 3 and 5,

respectively. These settings are uniformly used for themodel
mining of all categories.

5.3.3 Technical Details

We set the maximum iteration number to M ¼ 20, and test
the mining performance with different threshold values of
t. Furthermore, considering the fuzzy cases of web images,
we cannot ensure that each image contains an object in the
target category. Therefore, not all the images can be used in
each model mining iteration, and we set two criteria to con-
trol the image quality. The first criterion is that, when we
match the model to the image, the ratio of model nodes
matched to � should be greater than 40 percent. The second
criterion states that, in each iteration, no more than 20 web
images should be used for model mining. Because we can-
not ensure that all web images contain the target objects,
we simply select the 20 top-ranked images from those col-
lected, i.e., the 20 images whose ARGs can match the cur-
rent model (graph template) with the lowest energy. All of
these settings are uniformly applied to model mining for all
10 categories.

5.4 Experiment 4: Mining Deformable Object Models
from Videos

We collect three video sequences (containing a cheetah,
swimming girls, and a frog) from the internet, and use our
method to mine models for deformable objects from these
videos. We consider each video frame as an ARG, and the
deformable model as the mSAP among the ARGs. For each
video, we only label three nodes to construct an initial
graph template. The design of the ARGs is the same as
in Experiment 3. Matching parameters are initialized as

wP
i¼1;2 ¼ wQ

j¼1;2;3 ¼ 1 and P� ¼ Q� ¼ þ1. We set t ¼ 1:5 and

apply the graph mining procedure for M ¼ 20 iterations. In
each iteration, we simultaneously mine the pattern and train
matching parameters.

5.5 Quantitative Analysis and Evaluations

5.5.1 Competing Methods

We compare the proposed method with nine approaches
from the fields of graph matching and graph mining,
although as mentioned previously, our graph-mining
method is orthogonal to the learning concepts in the com-
peting methods. To enable a fair comparison, each
method considers the same scenario of “learning a graph-
ical model (or target pattern) from a set of ARGs with a
single labeled graph template.” All the competing meth-
ods use the same initial graph templates and the same
training and testing ARGs to start each learning process
in a cross validation.

First, we focus on the approaches of “graph (or image)
matching” and “unsupervised learning for graph (or image)
matching.” We take graph/image matching methods with-
out training as the baseline. Actually, there are two typical
paradigms for graph (image) matching, i.e., the minimiza-
tion of matching energy and the maximization of matching

compatibility. Matching compatibility is usually formulated
as argmaxxCðxÞ ¼

P
s;t e

�PsðxsÞ�PtðxtÞ�Qstðxs;xtÞ, where Psð�Þ
and Qstð�; �Þ are defined using absolute differences. Thus,
we design three competing methods, i.e., MA, MS, and MT,
which represent the two image matching paradigms. MA
uses TRW-S [38] to minimize the matching energy in (1) for
image matching, while MS and MT maximize the overall
matching compatibility. The compatibility of matching
objects was proposed by [42], and MS and MT use spectral
techniques [42] and TRW-S [38], respectively, to solve the
matching optimization argmaxxCðxÞ.

Then, let us consider the unsupervised approaches for
learning graph matching. They mainly train matching
parameters to improve the model’s matching accuracy,
do not require matching assignments to be labeled, and
do not involve the learning of graphical structures. As the
benchmark unsupervised method for learning graph
matching, we use the method proposed by Leordeanu
and Hebert [5]. This iteratively trains the attribute
weights for matching, i.e., wP

i and wQ
j in the matching

penalties PsðxsÞ and Qstðxs; xtÞ. Thus, based on [5], the
two competing approaches of LS and LT are obtained by
applying [42] and [38] for matching optimization, respec-
tively. Note that the original version of [5] applies a uni-

form initialization for wP
i and wQ

j , but can suffer from

biased learning (which we discuss later). To enable a fair
comparison and ease the problem of bias, LS and LT are
further modified to have the same weight initialization as
our method8, denoted by LS-O and LT-O. Finally, we use
the part of our method that iteratively estimates model
attributes, according to Definitions 2a, 2b, as another
baseline, denoted as SM.

Finally, we compare our method with graph-mining
approaches. To enable a fair comparison, the competing
methods must be oriented to the graph domain of ARGs,
but should not employ certain techniques, such as using the
similarities between unary attributes to pre-determine a set
of matching assignment candidates. Thus, we compare our
approach to structural refinement [7], denoted by SR. This
method is on the boundary between graph mining and
learning graph matching, as it only trains matching parame-
ters and attributes, and deletes “bad” nodes to refine the
model’s structure, rather than mining new nodes from
ARGs. From this perspective, the mining of a maximal-size
SAP proposed in this study is more close to the spirit of
graph mining. Note that our method can mine iSAPs with
different graph sizes by setting different threshold values t.
Therefore, given an iSAP that is mined with a certain value
of t, to enable a fair comparison, SR must modify the initial
graph template to a model containing the same number of
nodes as this iSAP.

5.5.2 Evaluation Metrics & Results

Fig. 11 illustrates the object detection performance of the
models mined in Experiments 1, 3, and 4.

Pattern growth: Generally speaking, we can use the
change in graph size to illustrate the performance of our

8. As a tradeoff, we apply a raw setting for the weights of just one or
two attributes to ease the bias learning problem.
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method for different values of t. Fig. 10 shows the growth of
the SAP with an increase in the threshold t in Experiment 1.

Average matching rate: We use the average matching rate
(AMR) to evaluate the matching performance. AMR is
widely used in the evaluation of learning graph match-
ing [4], [5], [7]. The AMR is measured across all matching
results produced by the extracted maximal SAP in the cross
validation. Table 2 lists the quantitative results for compari-
son, where the threshold t is set to 0:25 for the learning of
all categories for both the RGB and RGB-D images. With the
exception of SR, the competing methods do not have the
ability to refine the topological structure of the graph tem-
plate. Thus, they are sensitive to the bias in the initial graph
template, including biased attributes, occluded nodes, and
redundant nodes. The biased graph template may produce
a biased matching, and this, in turn, increases the learning
bias, thus propagating into a significant bias. In contrast,
our method modifies the biased structure in early iterations
to reduce the prevalence of biased matching in further

iterations. Besides the elimination of “bad” parts, as in SR,
our approach also discovers missing parts, thereby exhibit-
ing better performance.

Selection rate & error rate: Our method mines the pattern
of common subgraphs in ARGs as the category model.
Obviously, as shown in Fig. 11, the subgraph pattern cannot
cover all the feature points extracted from the objects.

Some feature points on the target object represent object-
specific textures, rather than the common category pattern.
We call these redundant feature points. Our method auto-
matically identifies redundant feature points, and only
selects points from common object parts to form the cate-
gory model during the graph-mining process. However,
there is no convincing way to label the ground truth of
whether a feature point is redundant. Therefore, the goal of
category modeling from big data is to mine a maximal num-
ber of feature points from target objects and a minimal num-
ber of feature points from the background.

Consequently, in this paper, we propose the selection
rate and error rate of the mined model as metrics for evalu-
ating the relative pattern size of the model and the errors in
model mining, respectively. When we match a model to an
ARG (i.e., an image), the selection rate of the model is
defined as the proportion of feature points on the target
object that are selected to construct the model, i.e.,

kV M
T
V Ok=kV Ok, where V O and V M denote the subset of

nodes on the target object in the ARG and the subset of
nodes that are matched by the model, respectively. The
error rate is defined as the proportion of nodes matched by
the model that are located on the background, i.e.,

kV M n V Ok=kV Mk.

Fig. 11. Object detection performance on the maximal SAPs trained from RGB-D images in Experiment 1 (upper left), web images in Experiment 3
(right; t is set to 2:5), and videos in Experiment 4 (lower left; t is set to 3:0). Results for the “iphone” and “coca cola” categories are not shown due to
the copyright problem.

Fig. 10. Rate of change in size of the SAPs mined with different thresh-
olds (t) (left) and the rate of node insertion (solid curves) and elimination
(dotted curves) in different iterations (right).
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In Experiment 3, we set different values of t to mine cate-
gory models with different graph sizes. Fig. 12 illustrates
the change in selection rate and error rate for different val-
ues of t. As mentioned in Section 5.3.3, we cannot ensure
that all web images contain objects with the model’s pat-
tern.9 We simply select the 20, 40, 60, and 80 top-ranked
images to compute the average selection rate and error rate
of a model. The histograms in Fig. 12 show the average per-
formance for all the mined models in the 10 categories.

Considering the existence of redundant feature points,
the average selection rate rarely reaches 100 percent. There-
fore, the objective is to mine a category model with a certain
average selection rate and a low average error rate. In
Fig. 12, a larger value of t corresponds to a higher selection
rate. However, the relationship between the value of t and
the error rate is not significant, although in general, larger
values of t lead to larger error rates. In addition, setting a
large number of web images (e.g. the 80 top-ranked images)
for evaluation usually leads to a high error rate. When the
number of images is large, we cannot ensure their quality
during the testing stage.

Training of matching parameters: We further combine the
training of matching parameters into the iterative flowchart
of graph mining, and apply this technique to the categories
of the notebook PC (in Experiment 1), panda (in Experiment
3), cheetah, swimming girls, and frog (in Experiment 4). The
matching parameters are incrementally modified at the end
of each iteration. Fig. 13 visualizes the attribute weights that
are estimated for the static object in Experiment 3 and the
deformable animal in Experiment 4. For each pair of nodes

ðs; tÞ, the unary SIFT features (F s
1 and F t

1) and the third

pairwise feature (F st
3 that measures the angle between the

centerline and each of the nodes s and t) have more impacts
on graph matching. Compared to the SAP of a dynamic
frog, the SAP of the static panda head has higher weights

for deformation-sensitive attributes, i.e., F s
2 and F st

j¼1;2;3;5.
Then, we focus on the quantitative evaluation of the

parameter training module. When we match a model
(pattern) to a set of positive ARGs (the ARGs containing

the target pattern) and a set of negative ARGs (those rep-
resenting the background), the ratio of the average energy
of the positive matches to that of the negative matches
can be regarded as a metric to evaluate the distinguishing
capacity of the model. This metric is just like the
“eigengap” for evaluating the spectral graph matching in
[5]. In Experiments 1 and 4, we produce different sets of
models with different sizes by applying different values
of t via a series of cross validations. Thus, Figs. 14a and
14b shows how the average energy ratio changes with the
average model size among different sets of models. The
method of Ours+UniformWeight uniformly sets the attri-
bute weights to 1, while the Ours+LearnWeight method
automatically learns the attribute weights. Both Ours
+UniformWeight and Ours+LearnWeight train P� and Q� to
enable a fair comparison. Ours+LearnWeight exhibits supe-
rior performance to the other competing methods.
Figs. 14c and 14d illustrates the mining performance
using different values of t. Considering that the mining
process may drift if the pattern is modified to contain too
few or too many nodes, the comparison of the models
with the same sizes in Figs. 14a and 14b is more reason-
able than that in Figs. 14c and 14d.

Computation time: Fig. 15 shows the average time
required to mine each category model in Experiment 3. The
algorithm is implemented in Matlab, and we compute the
time cost using eight hyper threads on an Intel Xeon CPU
X5560 @2.80 GHz. Large values of t usually lead to large
graph sizes in the mined models, and require additional
computation time. Then, we analyze the computational cost
of different competing methods. Actually, the main compu-
tational cost of these methods is in the energy minimization

of the QAPs during the matching/mining processes. Let V0

TABLE 2
Comparison of Average Matching Rates

Category From RGB images From RGB-D images

Method NP DB BA BU SP DU BI NP DB BA BU SP DU BI

MA [38] 44.30 69.93 45.44 68.71 66.88 58.43 58.94 69.00 75.25 57.97 75.33 72.65 83.96 77.78
MS [42] 55.11 40.31 45.56 56.39 41.02 50.70 75.55 63.17 44.98 52.46 67.98 69.04 49.74 90.63
MT [38] 56.05 56.15 55.28 58.02 none none none 62.02 59.11 60.88 61.13 none none none
LS [5], [42] 46.40 49.46 50.25 54.74 none none none 57.40 55.66 56.99 59.15 none none none
LS-O [5], [42] 53.62 69.52 55.21 70.74 71.31 73.24 81.44 64.63 74.18 60.75 77.99 76.48 84.53 87.61
LT [5], [38] 48.83 51.24 50.97 56.39 none none none 61.94 57.91 59.59 60.51 none none none
LT-O [5], [38] 56.57 73.01 57.35 73.66 72.84 80.15 82.60 69.04 75.09 65.37 80.44 77.31 85.47 89.33
SR [7] 60.31 79.38 79.59 85.92 91.76 93.43 84.15 72.23 85.84 88.65 86.91 84.69 95.47 91.05
SM 72.02 85.90 72.16 83.56 79.87 83.91 71.75 89.05 85.97 75.61 84.95 90.85 95.31 94.82
Ours 72.91 96.18 91.49 91.18 94.45 99.01 88.99 99.06 98.74 98.57 96.76 93.62 96.65 97.69

NP, DB, BA, BU, SP, DU, and BI indicate the notebook PC, drink box, basket, bucket, sprayer, dustpan, and bicycle categories.

Fig. 12. Selection rate and error rate. We selected the top 20, 40, 60, and
80 object samples for each model to calculate the selection rate and
error rate.

9. This is similar to the idea that people use different deformable
part models to represent different object sub-patterns (e.g. shape pat-
terns from different viewpoints) within a whole category.
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denote the node set of the initial graph template and Vk

denote the node set of the kth ARG G0k. First, MA, MS, and
MT directly match the graph template to ARGs without
learning. Thus, their computation cost for learning is zero.
Second, the LS,LS-O,LT,LT-O, and SM methods modify the
graph template inM iterations, but do not change the graph
size of the model. In each iteration, they match the graph
template to all the ARGs. The matches to G0k can be com-

puted as a QAP that assigns each of the kV0k fully con-
nected nodes in the template to one of the kVkk labels10 as
its matching assignment. We denote this computational cost

as cðkV0k; kVkkÞ. Note that there are various graph matching
optimization techniques that can solve this QAP, and each

of them has a different accuracy and cðkV0k; kVkkÞ (please
see [43] for a comparison between them). Therefore, their
computation cost for model learning can be summarized as

M
PN

k¼1 cðkV0k; kVkkÞ. Third, for the proposed method, let

V1;V2; . . . ;VM denote the node sets of the model after
1; 2; . . . ;M iterations. Thus, the computational cost of

graph mining is
PM�1

m¼0
PN

k¼1 cðkVmk; kVkkÞ. Moreover, in

each iteration, we propose a candidate for the new
node, which is a QAP that assigns each of the N fully con-
nected ARGs to one of ½maxkkVkk � kVmk� labels with
computational cost cðN;maxkkVkk � kVmkÞ. Therefore,

the overall computation is
PM�1

m¼0 ½cðN;maxkkVkk � kVmkÞþPN
k¼1 cðkVmk; kVkkÞ�. Finally, considering that SR cannot

add new nodes to the model, we assume that the size of the

model is minfkV1k;V0g; . . . ;minfkVMk;V0g after 1; . . . ;M

iterations. Hence, its time cost is
PM�1

m¼0
PN

k¼1 cðminfkVmk;
kV0kg; kVkkÞ. In summary, image matching methods, i.e.,
MA, MS, and MT, spend no computation on model learn-
ing. If we ignore the computation of node discovery, the
computational cost of the proposed method is comparable
to that of the other competing methods. In particular, if we
delete more redundant nodes and add fewer new nodes
during the mining process (by setting a small value of t),
the graph matching cost would approximately be that of SR
and be less than those of LS,LS-O,LT,LT-O and SM.

6 DISCUSSION AND CONCLUSIONS

In this paper, we redefined the unsupervised learning of
graph matching to model the discovery of missing parts,
and thus idealize the spirit of structural learning. The
proposed method corrects errors in the topological struc-
ture of the initial graph template. As the threshold t

controls the fuzziness of the maximal SAP, it should be
set corresponding to the maximal graph (object) deform-
ability in the ARGs. In real applications, we can apply the
following method to determine the value of t. We can
first extract a number of SAPs with different values of t,
and then select the SAP with the minimum ratio of
matching energies between positive and negative ARGs
(see Figs. 14c and 14d).

The maximum iteration numberM can be empirically set
to a large number that is far greater than the operation times
of node insertion and node elimination. Given t, the target
model can finally converge to a pattern with a certain size
and attributes. The value of M has little effect on the mining
performance, as long as M is sufficiently large. Instead of
directly setting M, we can use a stopping criteria for
the mining procedure, i.e., the pattern size does changes
in the latest three iterations, which would yield the
same performance.

In terms of graph mining, this study can also be under-
stood as the mining of maximal-size subgraph patterns. We
proposed the SAP as the subgraph pattern of fuzzy ARGs,
and demonstrated a plausible method of mining the maxi-
mal-size subgraph pattern in the challenging domain of
ARGs. We provided an approximate solution for maximal
SAP extraction that does not require node enumeration.
Another difference between conventional graph mining
methods and our approach lies in the need for a graph tem-
plate. This is because the matching between ARGs is

Fig. 13. Initial graph templates and final models that are mined from videos. We also compare the weights for the static pattern of the panda head
mined from web images and the dynamic frog pattern mined from videos.

Fig. 14. Ratio of the energies of positive matches to those of negative
matches. (a,b) We apply different parameters that control the final pat-
tern size to the competing methods to enable a fair comparison. (c,d)
The ratio changes along with t.10. We ignore matching choices of �.
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formulated as a QAP, meaning that this graph matching can
only be reliably achieved when an approximate area of
interest has been provided for the subgraph pattern.

REFERENCES

[1] H. Jiang and C.-W. Ngo, “Image mining using inexact maximal
common subgraph of multiple args,” in Proc. 9th Int. Conf. Vis. Inf.
Syst., 2003, pp. 446–449.

[2] M. Cho, K. Alahari, and J. Ponce, “Learning graphs to match,” in
Proc. IEEE Int. Conf. Comput. Vis. 2013, pp. 25–32.

[3] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, and A. J. Smola,
“Learning graph matching,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 6, pp. 1048–1058, Jun. 2009.

[4] M. Leordeanu and M. Hebert, “Smoothing-based optimization,”
in Proc. Conf. Comput. Vis. Pattern Recog., 2008, pp. 1–8.

[5] M. Leordeanu and M. Hebert, “Unsupervised learning for graph
matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2009,
pp. 1–8.

[6] L. Torresani, V. Kolmogorov, and C. Rother, “Feature correspon-
dence via graph matching: Models and global optimization,” in
Proc. 10th Eur. Conf. Comput. Vision: Part II., 2008, pp. 596–609.

[7] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki, “Learning
graph matching for category modeling from cluttered scenes,” in
Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 1329–1336.

[8] M. Cho and K. M. Lee, “Progressive graph matching: Making a
move of graphs via probabilistic voting,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recog., 2012, pp. 398–405.

[9] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki, “When 3d
reconstruction meets ubiquitous rgb-d images,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2014, pp. 700–707.

[10] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki,
“Attributed graph mining and matching: An attempt to define
and extract soft attributed patterns,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., 2014, pp. 23–28.

[11] P. Hong and T. Huang, “Spatial pattern discovery by learning a
probabilistic parametric model from multiple attributed relational
graphs,” Discrete Appl. Math., vol. 139, pp. 113–135, 2004.

[12] C. Jiang, F. Coenen, and M. Zito, “A survey of frequent subgraph
mining algorithms,” The Knowl. Eng. Rev., vol. 28, no. 1, pp. 1–31,
2012.

[13] L. Thomas, S. Valluri, and K. Karlapalem, “Margin: Maximal fre-
quent subgraph mining,” in Proc. 6th IEEE Int. Conf. Data Mining,
vol. 4, no. 3, pp. 1097–1101, 2010.

[14] J. Wang, Z. Zeng, and L. Zhou, “Clan: An algorithm for mining
closed cliques from large dense graph databases,” in Proc. 22nd
Int. Conf. Data Eng., 2006, pp. 73–82.

[15] Z. Zeng, J. Wang, L. Zhou, and G. Karypis, “Coherent closed
quasi-clique discovery from large dense graph databases,” in
Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2006, pp. 797–802.

[16] J. Huan, W. Wang, J. Prins, and J. Yang, “Spin: Mining maximal
frequent subgraphs from graph databases,” in Proc. 10th ACM Int.
Conf. Knowl. Discovery Data Mining, 2004, pp. 581–586.

[17] H. Xie, K. Gao, Y. Zhang, J. Li, and H. Ren, “Common visual pat-
tern discovery via graph matching,” in Proc. 19th ACM Int. Conf.
Multimedia, 2012, pp. 1385–1388.

[18] H. Liu and S. Yan, “Common visual pattern discovery via spa-
tially coherent correspondences,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2010, pp. 1609–1616.

[19] N. Quadrianto, C. Chen, and C. H. Lampert, “The most persistent
soft-clique in a set of sampled graphs,” in Proc. 29th Int. Conf.
Mach. Learn., 2012, pp. 583–590.

[20] M. Brunato, H. H. Hoos, and R. Battiti, “On effectively finding
maximal quasi-cliques in graphs,” in Proc. Learn. Intell. Optim.
Conf., 2008, vol. 5313, pp. 41–55.

[21] M. Leordeanu, M. Hebert, and R. Sukthankar, “Beyond local
appearance: Category recognition from pairwise interactions of
simple features,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2007, pp. 1–8.

[22] W. Brendel and S. Todorovic, “Learning spatiotemporal graphs of
human activities,” in Proc. IEEE Int. Conf. Comput. Vis., 2011,
pp. 778–785.

[23] G. Kim, C. Faloutsos, and M. Hebert, “Unsupervised modeling of
object categories using link analysis techniques,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2008, pp. 1–8.

[24] H.-K. Tan and C.-W. Ngo, “Localized matching using earth mov-
ers distance towards discovery of common patterns from small
image samples,” Image Vis. Comput., vol. 27, pp. 1470–1483, 2009.

[25] J. Yuan, G. Zhao, Y. Fu, Z. Li, A. Katsaggelos, and Y. Wu,
“Discovering thematic objects in image collections and videos,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 21, no. 4, pp. 2207–
2219, Apr. 2012.

[26] G. Zhao and J. Yuan, “Mining and cropping common objects from
images,” in Proc. ACM Int. Conf. Multimedia, 2010, pp. 975–978.

[27] M. Cho, Y. M. Shin, and K. M. Lee, “Unsupervised detection and
segmentation of identical objects,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2010, pp. 1617–1624.

[28] D. Parikh, C. Zitnick, and T. Chen, “Unsupervised learning of
hierarchical spatial structures in images,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recog., 2009, pp. 2743–2750.

[29] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado,
J. Dean, and A. Ng, “Building high-level features using large scale
unsupervised learning,” in Proc. 29th Int. Conf. Mach. Learn., 2012,
pp. 81–88.

[30] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, and W. Buntine,
“Unsupervised object discovery: A comparison,” Int. J. Comput.
Vis., vol. 88, no. 2, pp. 284–302, 2010.

[31] L. Mukherjee, V. Singh, J. Xu, and M. Collins, “Analyzing the sub-
space structure of related images: Concurrent segmentation of
image sets,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 128–142.

[32] G. Kim and E. Xing, “On multiple foreground cosegmentation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012, pp. 837–844.

[33] A. Joulin, F. Bach, and J. Ponce, “Multi-class cosegmentation,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2012, pp. 542–549.

[34] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki,
“Unsupervised 3d category discovery and point labeling from a
large urban environment,” in Proc. IEEE Int. Conf. Robot. Autom.,
2013, pp. 2685–2692.

[35] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki, “Start from
minimum labeling: Learning of 3d object models and point label-
ing from a large and complex environment,” in Proc. IEEE Int.
Conf. Robot. Autom., 2014, pp. 3082–3089.

[36] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki, “Category
modeling from just a single labeling: Use depth information to
guide the learning of 2d models,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2013, pp. 193–200.

[37] Q. Zhang, X. Song, X. Shao, H. Zhao, and R. Shibasaki, “From rgb-
d images to rgb images: Single labeling for mining visual models,”
ACM Trans. Intell. Syst. Technol., vol. 6, no. 2, pp. 16:1–16:29, 2015.

[38] V. Kolmogorov, “Convergent tree-reweighted message passing
for energy minimization,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 10, pp. 1568–1583, Oct. 2006.

[39] Category dataset of kinect RGBD images [Online]. Available:
http://sites.google.com/site/quanshizhang

[40] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detec-
tion and hierarchical image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[41] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2005, pp. 886–893.

[42] M. Leordeanu and M. Hebert, “A spectral technique for corre-
spondence problems using pairwise constraints,” in Proc. 10th
IEEE Int. Conf. Comput. Vis., 2005, pp. 1482–1489.

[43] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A.
Agarwala, M. Tappen, and C. Rother, “A comparative study of
energy minimization methods for markov random fields,” in Proc.
Eur. Conf. Comput. Vis., 2006, pp. 16–29.

Fig. 15. Average graph-mining time.

544 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. 3, MARCH 2016



Quanshi Zhang received the BS degree in
machine intelligence from Peking University,
China, in 2009, and MS and PhD degrees in cen-
ter for spatial information science from the Uni-
versity of Tokyo, Japan, in 2011 and 2014,
respectively. In 2014, he joined the Center for
Vision, Cognition, Learning, and Art, at the Uni-
versity of California, Los Angeles, as a post-
doctoral researcher. His research is mainly in
computer vision, robotics, and graph theory.

Xuan Song received the BS degree in informa-
tion engineering from the Jilin University, China,
in 2005 and the PhD degree in signal and infor-
mation processing from Peking University, China,
in 2010. From 2010 to 2012, he joined the Center
for Spatial Information Science, The University of
Tokyo as a post-doctoral researcher. In 2012 and
2015, he was promoted to a project assistant pro-
fessor and project associate professor at the
same university. His research is mainly in artificial
intelligence, computer vision, and robotics.

Xiaowei Shao received the BE and PhD degree
in electronic engineering and information science
from the University of Science and Technology of
China in 1999 and 2006, respectively. Since
2006, he worked in the Center for Spatial Infor-
mation Science, University of Tokyo, Japan. Now,
he has been a project associate professor at the
same University. His research interests include
computer vision and pattern recognition.

Huijing Zhao received the BS degree in com-
puter science from Peking University, Beijing,
China, in 1991, and the ME and PhD degrees in
civil engineering from the University of Tokyo,
Tokyo, Japan, in 1996 and 1999, respectively. In
2003, she became a visiting associate professor
with the Center for Spatial Information Science.
In 2007, she joined Peking University as a pro-
fessor with the Key Laboratory of Machine Per-
ception (MOE), and the School of Electronics
Engineering and Computer Science. Her

research interests include machine perception, intelligent vehicles,
and spatial data handling.

Ryosuke Shibasaki received the MS and PhD
degrees in civil engineering from the University of
Tokyo in 1982 and 1987, respectively. From 1982
to 1988, he was with the Public Works Research
Institute, Ministry of Construction. From 1988 to
1991, he was an associate professor in the Civil
Engineering Department, University of Tokyo. In
1991, he joined the Institute of Industrial Science,
University of Tokyo. In 1998, he was promoted to
a professor in the Center for Spatial Information
Science, University of Tokyo. His research inter-

est covers three-dimensional data acquisition for GIS, conceptual model-
ing for spatial objects, and agent-based microsimulation in a GIS
environment.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ETAL.: OBJECT DISCOVERY: SOFTATTRIBUTED GRAPH MINING 545



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


