
Unsupervised Skeleton Extraction and Motion Capture

from Kinect Video via 3D Deformable Matching

Quanshi Zhanga, Xuan Songa, Xiaowei Shaoa, Ryosuke Shibasakia, Huijing
Zhaob

aCenter for Spatial Information Science, University of Tokyo
bKey Laboratory of Machine Perception (MoE), Peking University

Abstract

This paper presents a novel method to extract skeletons of complex ar-
ticulated objects from 3D point cloud sequences collected by the Kinect.
Our approach is more robust than the traditional video-based and stereo-
based approaches, as the Kinect directly provides 3D information without
any markers, 2D-to-3D-transition assumptions, and feature point extraction.
We track all the raw 3D points on the object, and utilize the point trajec-
tories to determine the object skeleton. The point tracking is achieved by
the 3D non-rigid matching based on the Markov Random Field (MRF) De-
formation Model. To reduce the large computational cost of the non-rigid
matching, a coarse-to-fine procedure is proposed. To the best of our knowl-
edge, this is the first to extract skeletons of highly deformable objects from
3D point cloud sequences by point tracking. Experiments prove our method’s
good performance, and the extracted skeletons are successfully applied to the
motion capture.
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1. Introduction

Unsupervised object skeleton extraction is an active research topic in
computer vision, as it can potentially improve performance in various CV
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Figure 1: Skeleton extraction from a 3D point cloud sequence. The 3D point cloud
sequence is collected by the Kinect. (a1–2) No prior knowledge of the object type is
required. E.g. The object is a man holding two cones (in the circles). (b1–2) Input: a 3D
point cloud sequence of the object obtained by the Kinect. (c1–2) Output: the object’s
specific skeleton. (d) The Kinect sensor device [14].

applications, such as 3D motion capture, 3D pose estimation, activity recog-
nition, 3D object tracking and etc.

Previous approaches extract articulated object skeletons from videos [1]
[2] [3] [4] [5] [6], motion capture data [7] [8], and static object models [9] [10]
[11] [12] [13]. However, all these approaches have their intrinsic limitations,
such as “difficult to reflect the 3D object motion”, “need some markers on
the object”, “the extracted skeleton and recorded motion are inaccurate in
the 3D coordinate” and etc. Nevertheless, with the fast development of 3D
hardware, the Kinect as a new kind of 3D sensor has received the increasing
attention for solving traditional computer vision problems. It is developed
by Microsoft for the Xbox 360 video game platform, and it can collect both
the RGB video stream and the depth sensing stream at a frame rate of 30Hz
(as shown in Fig. 1(a1–2,b1–2)). Obviously, the Kinect provides us another
choice: why not extract object skeletons and capture motion directly from 3D
point cloud sequences? Therefore, the purpose of this paper is to develop a
novel approach that can extract articulated object skeletons and capture object
motion directly from 3D point cloud sequences without any prior information,
such as the object type and etc.

Our approach mainly contains three steps, as illustrated in Fig. 2. At
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Figure 2: The whole framework. (1) The input is the 3D point cloud sequence collected
by the Kinect. The RGB video data (also collected by the Kinect) are not required by our
system. (2) The coarse-to-fine MRF-based 3D non-rigid matching generates the 3D point
trajectories. We utilize the integral geodesic distance (a) as the point feature in matching.
We calculate the point-by-point deformation between the 1st frame (b) and each other
frame to track 3D points (c). (3) The skeleton extraction. We cluster trajectories into
body segments (d), and then utilize a probabilistic graphical model to determine the object
skeleton (e). (4) Finally, the automatically extracted skeleton is applied to the motion
capture.

first, we utilize a coarse-to-fine MRF-based 3D non-rigid matching to track
all the raw 3D points (as shown in Fig. 2(a,b,c)). Then, we utilize the spectral
clustering to group these point trajectories into different body segments (as
shown in Fig. 2(d)). Finally, we utilize a graph model to determine the
connections between the body segments (as shown in Fig. 2(e)). In addition,
the extracted skeleton can also be applied to the motion capture (as shown
in Fig. 2).

The proposed approach has the following key features that make it ad-
vantageous over previous ones: (1) our system does not require markers in
the data collection, which not only saves the human labor, but also has mer-
its in learning the object’s unknown structure, as shown in Fig. 1(a1–2). In
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contrast, for the marker-based approach, people usually locate markers on
some key parts of the articulated object (such as the joints and body seg-
ment centers), according to their subjective understanding. The subjective
understanding can bring priori errors to the unknown structure learning. (2)
Compared to the static-model-based approaches, our approach utilizes the
motion information to obtain accurate object segments. Moreover, it does
not require well-constructed 3D models. (3) Different from the video-based
3D reconstruction, the Kinect directly provides the object’s spatial structure
without any shape deformation assumptions. What’s more, in order to ob-
tain the body segments’ motion, we can directly track all the raw 3D points
without feature point extraction. Therefore, the 3D point tracking does not
suffer from monotonous colors and illumination changes as the video-based
tracking.

The main contributions of this paper can be summarized as follows: (1)
To our best knowledge, this is the first work that extracts skeletons of com-
plex articulated objects directly from 3D point cloud sequences without prior
information by point-level tracking. Our algorithm provides a global segmen-
tation of the object body segments, which is robust to small intra-segment
deformation. (2) We propose an efficient coarse-to-fine framework to track
the 3D points based on the MRF Deformation Model. The coarse-to-fine s-
trategy greatly reduces the tracking’s time/memory cost. To our best knowl-
edge, this is the first work to track all the raw 3D points of a deformable
object without any transformation assumptions.

The rest of this paper is organized as follows: The related work is briefly
reviewed in the following section. Section 3 presents the coarse-to-fine 3D
point tracking and Section 4 presents the skeleton extraction. The experi-
ments and results are presented in Section 5. Finally, the paper is concluded
in Section 6.

2. Related work

Many previous approaches extract skeletons from videos (Ross et al. [1]
[2], Yan et al. [3] [4], Tresadern et al. [5], and Ramanan et al. [6]). [1]
[2] [3] [4] utilize the KLT tracker [15] to get feature trajectories. Howev-
er, these methods require sufficient feature points on some key parts of the
object for good performance, and the image-based tracking may suffer from
illumination changes.
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Some vision-based methods utilize multiple cameras to obtain a dense 3D
point cloud sequence of the object, and then extract the object skeleton from
the 3D sequence. Compared to the pure video-based methods, these meth-
ods obtain the object’s 3D structure and spatial motion more directly and
accurately. Cheung et al. [16] reconstruct a model of the kinematic structure
and appearance of a person from the visual hull. However, the model recon-
struction is based on the person’s free motion, and they determine the joint
point one by one by allowing only one body part to move in each step. Chu
et al. [17] obtain volume sequences by multiple cameras, extract the skeleton
curve from each frame, and then utilize the skeleton curves to determine the
kinematic model. They do not track all the points over frames, so the system
may face difficulties when the shape of some object parts (such as a round
bowl) is not suitable for the principle curve extraction.

Kirk et al. [7] and Sturm et al. [8] directly get 3D point trajectories by
using the motion capture system. The articulated body segments, as well as
their motion, are learned from the marker trajectories.

Sturm et al. [18] utilize the depth data to learn the articulated models of
cabinet doors and drawers with the rectangle detection.

The approaches mentioned above all extract object structure based on
the motion information. [3] [5] utilize a factorization method to discover the
rotation axis between two object body segments, and [8] generates a low-
dimension parameter-free representation of the articulated object to extract
the object structure. They assume the body segments are rigid. Therefore,
these methods are not robust to the non-rigid body segments with complex
intra-segment deformation. In contrast, some approaches in [7] [1] [2] [4] and
ours just cluster trajectories into the body segments, which is based on the
fact that the distance between two points on the same rigid body segment is
constant. The clustering provides a global solution to the body segmentation,
which is robust to small intra-segment deformation in theory.

Other approaches [9] [10] [11] extract skeletons from static 3D or 2D
models. However, they only use the topological and geometrical information,
and cannot segment the articulated object without motion cues. Aujay et al.
[12] utilize a harmonic function to get anatomical information to improve the
skeleton. Schaefer et al. [13] propose an example-based skeleton extraction,
which requires several well-constructed 3D models in different poses.

Generally, the motion-based skeleton extraction method obtains an ar-
ticulated skeleton, which represents the topological structure of the object
[1] [2] [3] [4] [5] [19] [16] [7]. However, the skeleton extracted from the static
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Figure 3: The 3D point tracking. The tracking is based on the non-rigid matching between
the first frame to any other frame.

model is usually the medial axes of body segments [9] [10] [11].
The Kinect is a recently-developed depth sensor and can directly provide

the 3D point cloud sequence of the object. More recently, researchers pay
the increasing attention to this sensor and have started to apply it to various
computer vision tasks. Shotton et al. [20] utilize the Kinect for human pose
recognition, and Oikonomidis et al. [21] utilize the Kinect to track hand
articulations.

We propose a more robust skeleton extraction method, which directly
tracks all the raw 3D points collected by the Kinect, and utilizes the point
trajectories to determine the skeleton. Our proposed system is more robust
than the video-based and the stereo-based methods. Compared to the video-
based and the stereo-based skeleton extraction approaches, our system does
not have to extract sufficient feature points for enough feature trajectories or
3D reconstruction. Usually, in the unique-color area, there are not enough
feature points, or the extracted feature points are not reliable. And the video-
based methods should also consider the limitations of structure-from-motion
algorithms in the 2D-to-3D transition.

3. Coarse-to-fine tracking 3D points

The first stage of our system is to generate the 3D point trajectories by
tracking each 3D point over frames (as shown in Fig. 3). The point tracking is
based on the multi-frame 3D non-rigid matching. The matching-based track-
ing is not achieved in a Markov process, so it avoids tracking error accumu-
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lation over frames. To match two specific frames, we extend the image-based
MRF Deformation Model proposed in [22] [23]. The time/memory cost to
match a large number of 3D points is intolerable. Therefore, we utilize a
coarse-to-fine strategy to reduce the searching range in matching.

3.1. MRF deformation model

Let F 1, F 2 denote two frames. We use a graph G = (V,E) to represent
the 3D points in F 1. Each node s ∈ V stands for a point in F 1, and its
spatial position is ps ∈ R

2. (s, t) ∈ E if ‖ps − pt‖ < ε (ε = 10cm, here).
Each node has k candidate matching points in frame F 2. L = {1...k} is a
label set. Let each node s ∈ V be assigned a label xs ∈ L. x = {xs|s ∈ V }.
Different labels indicate this node’s different candidate matching points.

The energy function of x is:

E(x|θ) =
∑
s∈V

θs(xs) +
∑

(s,t)∈E
θst(xs, xt) , (1)

where θs(·) is a unary data penalty function, and measures the feature dissim-
ilarity between two matched points. θst(·, ·) is a pairwise interaction penalty
function, which measures the discontinuities in deformation.

We take the integral geodesic distance as the point feature [24]. It is
a robust and discriminative feature for 3D object retrieval. The geodesic
distance is the distance from point to point on a surface. For the graph
G = (V,E), the geodesic distance between node s ∈ V and node t ∈ V ,
g(s, t), is the shortest path’s length from s to t in the G’s network. Node s’s
integral geodesic distance is defined as g(s) =

∑
t∈V g(s, t).

The unary data penalty function is defined as follows.

θs(xs) = ‖g(s)− g(ms(xs))‖2/σ2
g , (2)

where σ2
g is the geodesic distance’s variance. ms(xs) is the candidate match-

ing point in frame F 2 for node s with its label xs.
The real deformation may be complex, but two neighboring points are

expected to keep a constant distance over frames. Therefore, the pairwise
interaction penalty function is defined as follows.

θst(xs, xt) =

{
(‖ps−pt‖−‖pms(xs)−pmt(xt)

‖)2
σ2
d

pms(xs) �= pmt(xt)

τ pms(xs) = pmt(xt)

(3)
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Figure 4: The N -level coarse-to-fine procedure for candidate matching point selection.
{Bi

s}(i = 1, 2, ..., N) is node s’s sphere set. s’s k candidate matching points are uniformly
selected inside the sphere Bi

s in the ith level. s’s matched point calculated by the MRF
deformation model is set as Bi+1

s ’s center.

where σ2
d is the variance of the distance between two neighboring points, and

τ is a large const to prevent two nodes from matching to the same candidate
matching point. We set τ = maxu,v (‖pu − pv‖2)/(σ2

d), here.
We utilize TRW-S algorithm [25] to the MRF Deformation Model. TRW-

S is a recently developed algorithm for discrete energy minimization. Com-
pared to belief propagation (BP), TRW-S can ensure convergence, as it has
no loop.

3.2. Non-rigid matching

Coarse-to-fine Matching: To reduce the matching cost, Lee et al.
[26] simply decompose the point searching range from a 3D space to three
1D space, but the time/memory cost remains very large. We choose a coarse-
to-fine strategy for time/memory cost reduction.

The MRF Deformation Model is utilized in an N -level coarse-to-fine pro-
cedure to match two frames as shown in Fig. 4. Let’s take the node s’s
matching for example. In the first level, we select k points uniformly inside
a sphere Bs in frame F 2 as the candidate matching points. Then, we apply
the MRF Deformation Model to calculate s’s matched point. Bs’s center is
initialized as the estimated matching point in frame F 2, according to s’s spa-
tial position p(s). We repeat this process in the following levels. Bs’s center
is set as s’s matched point in the previous level’s matching. We reduce Bs’s

8



Figure 5: Matching multiple frames. The two-step non-rigid matching makes the 3D point
tracking not a Markov process, and thus avoids tracking error accumulation over frames.
(a) The deformation between Frame 1 and Frame i is given. (b) Match Frame i to Frame
(i+1). (c) The estimated deformation between Frame 1 and Frame (i+1). (d) With the
estimated deformation, match Frame 1 to Frame (i + 1) to get the accurate deformation
between Frame 1 and Frame (i+ 1). Only 50% of all the 3D points are shown for clarity.

radius level by level to get a coarse-to-fine result.
Matching multiple frames: The 3D points are tracked by the 3D non-

rigid matching. To avoid matching error accumulation over frames, we match
each frame to the first frame in a two-step matching framework, as shown
in Fig. 5. (1) The estimation step: Given the deformation between Frame
1 to Frame i, match Frame i to Frame (i + 1) to estimate the deformation
between Frame 1 and Frame (i+1). (2) The modification step: The estimated
deformation is utilized to initialize the candidate matching points. Match
Frame 1 to Frame (i+ 1) to get accurate deformation between Frame 1 and
Frame (i+ 1). The modified matching example is shown in Fig. 3.
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Figure 6: Skeleton extraction: (a) The body segmentation. The several-to-one matching
cannot be totally avoided by the MRF Deformation Model, so the point cloud seems
sparse. (b) The probabilistic graphical model of the body segments. Each node represents
a body segment. The edge width is the edge weight’s reciprocal. The minimum spanning
tree of these nodes indicates the topological connections between body segments. (c) The
skeleton with joint points and body segment central points.

4. Skeleton extraction

The second stage of our system is to extract the dynamic skeleton using
3D point trajectories generated in Section 3. The marker-based skeleton
extraction approach proposed in [7] [4] is modified to adapt to the 3D point
cloud data.

Body segmentation: The first step of skeleton extraction clusters the
points into rigid body segments (Fig. 6(a)). The body segments reflect the
body’s skeletal structure. In an ideal rigid body, any two points should keep a
constant distance over frames and their distance’s standard deviation should
be zero. Thus, we choose the standard deviation of two points’ distance over
frames as the distance measure as follows, and utilize spectral clustering [27]
to determine body segments.

dist(p1, p2) = V ar1/2(‖p1 − p2‖) , (4)

where, p1 and p2 (p1, p2 ∈ R
2) are two points.

Joint point determination: In the second step of the skeleton extrac-
tion, we utilize a probabilistic graphical model to determine the topological
connections between body segments as well as the joint points. We treat

10



each body segment as a node in a complete graph. The edge weight between
two body segments C1 and C2 is defined as follows.

WC1,C2 = max
i∈F

min
p1,i∈c1,i,p2,i∈c2,i

‖p1,i − p2,i‖ , (5)

where, F is the frame label set, c1,i, c2,i are the point sets of body segments
C1 and C2 in Frame i. C1 = {c1,i}, C2 = {c2,i}.

The two body segments with small edge weight have large possibility
to be connected. We generate the graph’s minimum spanning tree as the
topological connections between body segments. Fig. 6(b) shows the body
segment graph and the minimum spanning tree. We select the joint point
of two connected body segments from either body segment’s point set. The
joint point should be the one with the shortest average distance to the other
body segment over frames.

Skeleton generation: The last step of skeleton extraction draws skele-
ton based on joint points (Fig. 6(c)). To represent the body segment with
multiple joint points, we draw a skeleton between each pair of the joint points.
For the body segment with a single joint point (e.g. the lower leg and the
head), we connect the joint point to its farthest point in this segment.

5. Experiment

To show the performance of our system, we used the Kinect to collect four
3D point cloud sequences, and extracted four skeletons from these sequences
respectively. Sequence 1 is a man, Sequence 2 is a man holding two cones,
Sequence 3 is a box chain and Sequence 4 is a vacuum cleaner. Meanwhile,
we further collected the 3D data of a human upper body by using both the
Kinect (Sequence 5) and the marker-based motion capture system (marker
trajectories), in order to compare our method with the marker-based mo-
tion capture. To measure the coarse-to-fine strategy’s performance in the
time/memory cost reduction, we conducted five experiments on Sequence 5,
and the 3D point matching with five sets of different parameters was per-
formed in these experiments.

Body segment centers and the extracted skeleton’s joint points are usual-
ly the articulated object’s key points. Therefore, these automatically learned
centers and joint points can take place of the markers in the motion capture,
as in Experiment 1 (Section 5.2). We can extract the skeleton of any irregular
articulated object or unknown object, as no prior knowledge or constrains are
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required in our approach. E.g. the cones holding in man’s hands are success-
fully extracted as two specific body segments (Section 5.3) and the skeleton
of the box chain with a strange shape can also be extracted. (Section 5.5).

In this section, we will provide the details about these experiments and
quantitative comparisons.

5.1. Kinect

The Kinect sensor is a new active depth sensor developed by Microsoft for
the Xbox 360 video game platform. The Kinect contains an infrared projector
and a monochrome CMOS camera. Kinect interprets depth information from
continuously-projected infrared structure rays [14]. The depth estimation is
based on the time-of-flight of the infrared rays.

The Kinect collects both RGB video stream and relatively accurate depth
sensing stream at a frame rate of 30Hz. The depth sensing video uses a VGA
resolution of 640× 480 pixels with 11-bit depth (2048 sensitivity levels).

5.2. Experiment 1: A man

Data: We utilized the Kinect to collect the 3D point sequence of a man,
as shown in Fig. 7(a1–a4). The Kinect collected both the 3D point sequence
and the RGB video, and our approach only required the 3D point sequence.
The 3D point sequence had 22 frames with the frame rate of 5 fps. The
depth image’s resolution in each frame was 160 × 120. In each frame, there
were 1526 points on the object on average.

Tracking 3D points: Some body segments moved fast, such as the
upper arms and the lower legs. Sometimes, their translations between two
neighboring frames reached 50cm. Thus, we had to search each point’s can-
didate matching points within a radius of 50cm in the next frame. The total
number of candidate matching points reached more than 400 in some frames.
The non-rigid matching problem was an MRF optimization problem as shown
in Section 3.1. Without the coarse-to-fine procedure in matching, each node
would have at most 400 label choices, which cost too much computation time
and memory.

Therefore, in the estimation step (Section 3.2), we applied an 8-level
coarse-to-fine procedure to match two neighboring frames empirically. In
each level, at most 20 candidate matching points were selected. The sphere
radiuses in the 8 levels decreased from 50cm to 4cm exponentially. (The
sphere is the range to select candidate matching points for a node; see Sec-
tion 3.2). Inside the smallest sphere (the radius is 4cm), there were at most
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Figure 7: Experimental result of “a man”. (a1–a4) show the human’s poses in 4 video
frames. Lines in (b1–b4) show the deformations from the first frame to the other frames.
Only 50% of the 3D points are shown for clarity. (c1–c4) The left figure shows the extracted
skeleton with joint points and body segment central points. The right figure shows the
corresponding motion capture result.

11 (< 20) points to select. Thus, each node could be matched to any point
within 50cm in theory.

In the modification step of multiple-frame matching (Section 3.2), we
matched the first frame to each frame based on the estimated deformation.
Therefore, the candidate matching point’s searching range was not so large
as in the estimation step. We matched the first frame to each frame in a
6-level coarse-to-fine procedure. In each level, we also selected 20 candi-
date matching points, and the sphere radiuses decreased from 25cm to 4cm
exponentially.

Fig. 7(b1–b4) shows the modified deformation between the first frame to
the other frames.

The skeleton and the motion capture: The man’s extracted skele-
ton had 12 body segments: the head, the chest, the waist, the buttocks, two
upper arms, two lower arms, two upper legs and two lower legs. This body
segmentation agreed with the common sense. The joint points and body
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Figure 8: Experimental result of “a man holding two cones”. (a1–a4) show the object’s
poses in 4 video frames. Lines in (b1–b4) show the deformations from the first frame to
the other frames. Only 50% of the 3D points are shown for clarity. (c1–c4) show the
extracted skeleton with joint points and body segment central points. Note that the two
cones are successfully modeled as two individual body segments of the skeleton.

segment centers were important for the human body’s structure. There-
fore, these points could be utilized as the “markers” in the motion capture.
Fig. 7(c1–c4) shows the extracted skeleton and the motion capture result
based on the extracted skeleton.

5.3. Experiment 2: A man holding two cones

Data: We utilized the Kinect to collect the 3D point sequence of a
man holding two cones, as shown in Fig. 8(a1–a4). The RGB video was not
required by our approach. The 3D point sequence had 19 frames with the
frame rate of 5 fps. The depth image’s resolution was 160 × 120. In each
frame, there were 1292 points on the object on average.

Tracking 3D points: The average 3D point number of the “a man”
data and the “a man holding two cones” data in each frame was similar—1526
and 1292 respectively. Their point resolutions were also similar. Therefore,
we set the same parameters in the non-rigid matching: The 8-level coarse-to-
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fine matching procedure in the estimation step, and the 6-level coarse-to-fine
matching procedure in the modification step.

Fig. 8(b1–b4) shows the modified deformation between the first frame to
other frames.

The skeleton: The extracted skeleton had 15 body segments: two
cones, the head, the right shoulder, the chest, the waist, the buttocks, t-
wo upper arms, two lower arms, two upper legs and two lower legs, as shown
in Fig. 8(c1–c4). The cones were successfully modeled as two individual body
segments. The skeleton contained a right shoulder but no left shoulder. The
asymmetric skeleton was due to the asymmetric motion in the data.

5.4. Experiment 3: A box chain

Data: We utilized the Kinect to collect the 3D point sequence of a box
chain, as shown in Fig. 9(a1–a8). The RGB video was not required by our
approach. The 3D point sequence had 49 frames with the frame rate of 5
fps. The depth image’s resolution was 160 × 120. We utilized the depth
information to subtract the man behind the box chain. Thus, in each frame,
there were 627 points on the object on average.

Tracking 3D points: The box chain’s translations between two neigh-
boring frames were usually less than 10cm. Therefore, we applied an 4-level
coarse-to-fine matching procedure in both the estimation step and the mod-
ification step empirically (Section 3.2). In each level, at most 20 candidate
matching points were selected. The sphere radiuses in the 4 levels decreased
from 10cm to 4cm exponentially. Larger searching spheres and more levels
(as in Experiment 1 and 2) could be utilized in the coarse-to-fine matching
procedure, but it increased the computation cost.

Fig. 9(b1–b8) shows the modified deformation between the first frame to
other frames.

The skeleton: The extracted skeleton had 4 body segments: the left
segment, the left-center segment, the right-center segment and the right seg-
ment, as shown in Fig. 9(c1–c8).

5.5. Experiment 4: A vacuum cleaner

Data: We utilized the Kinect to collect the 3D point sequence of a
vacuum cleaner, as shown in Fig. 10(a1–a4). The RGB video was not required
by our approach. The 3D point sequence had 37 frames with the frame rate
of 5 fps. The depth image’s resolution was 160 × 120. In each frame, there
were 724 points on the object on average.
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Figure 9: Experimental result of “a box chain”. (a1–a8) show the object’s poses in 8 video
frames. Lines in (b1–b8) show the deformations from the first frame to the other frames.
Only 50% of the 3D points are shown for clarity. (c1–c8) show the extracted skeleton with
joint points.
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Figure 10: Experimental result of “a vacuum cleaner”. (a1–a4) show the object’s poses in
4 video frames. Lines in (b1–b4) show the deformations from the first frame to the other
frames. Only 50% of the 3D points are shown for clarity. Some matching errors exist in
the pipe and the stick, because the pipe and the stick are very thin and black, and thus,
the point number is very small in these parts in some frames. (c1–c4) show the extracted
skeleton with joint points.

Tracking 3D points: The vacuum cleaner’s translations between two
neighboring frames were usually less than 14cm. Therefore, we applied an
5-level coarse-to-fine matching procedure in both the estimation step and
the modification step empirically (Section 3.2). In each level, at most 20
candidate matching points were selected. The sphere radiuses in the 5 levels
decreased from 14cm to 4cm exponentially. Larger searching spheres and
more levels (as in Experiment 1 and 2) could be utilized in the coarse-to-fine
matching procedure, but it increased the computation cost.

Fig. 10(b1–b4) shows the modified deformation between the first frame
to other frames.

The skeleton: The extracted skeleton had 4 body segments, including
the stick and the pipe, as shown in Fig. 10(c1–c4).
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Figure 11: The inaccurate one-frame skeleton: The solid lines show the limbs’ length of
“a man” in Experiment 1 (a1,a2); the limbs’ and the cones’ length of “a man holding two
cones” in Experiment 2 (b1,b2); the four segments’ length of “a box chain” in Experiment
3 (c); the stick’s and pipe’s length of “a vacuum cleaner” in Experiment 4 (d). The
dashed lines show the ground truth measured manually. The segments’ length vibrates
due to joint points’ tracking errors.
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Segment Extracted Ground Accuracy
name length length

A man
left upper arm 34.1 35.0 97.45%
left upper leg 31.5 31.1 98.61%
left lower arm 34.5 28.9 80.74%
left lower leg 49.2 47.8 97.11%
right upper arm 35.2 35 99.58%
right upper leg 30.1 31.1 96.91%
right lower arm 27.1 28.9 93.60%
right lower leg 44.0 47.8 92.08%

A man holding two cones
left upper arm 32.9 39.1 84.10%
left upper leg 32.4 29.8 91.15%
left lower arm 32.6 27.1 79.41%
left lower leg 58.5 57.0 97.33%
left cone 27.6 29.4 94.03%
right upper arm 48.4 39.1 76.27%
right upper leg 13.6 29.8 45.58%
right lower arm 25.9 27.1 95.64%
right lower leg 67.8 57.0 81.10%
right cone 27.6 29.4 94.00%

A box chain
left 44.6 47.0 94.85%
left-center 65.0 47.0 61.76%
right-center 43.3 47.0 92.18%
right 50.5 47.0 92.57%

A vacuum cleaner
pipe 109.0 129.3 84.3%
stick 143.2 135.2 94.11%

Table 1: Evaluation of segments’ length
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5.6. Results and evaluation

To evaluate the extracted skeleton’s accuracy, we selected some semanti-
cally correct body segments from the skeleton, and measured their real length
manually as the ground truth. We took the segment’s average length in all
frames as the extracted length, and compared the extracted length with the
ground truth. The reason was that one-frame skeletons were inaccurate. The
segments’ length in these skeletons were greatly affected by the joint points’
tracking errors (as shown in Fig. 11).

However, there is no measurement to evaluate the correctness of a complex
skeletal structure (such as the skeleton of human beings) for the following
two reasons: (1) one object can be subjectively divided into different number
of body segments. E.g. A person’s trunk can be considered as consisted of
the chest, the waist and the buttocks, or just as one whole body segment. (2)
We can use different skeletal structures to represent the same body segment.
E.g. The person’s trunk can be represented as a rectangle, a stick, or a
“X” shape. Intuitively, only the limbs and the cones in hands have only one
skeletal structure hypothesis—a stick.

In Experiment 1–2, our approach could not detect the axial rotations and
tiny deformation on the wrist and the ankle, due to the data’s resolution and
noise. Thus, in the extracted skeleton, the hand was a part of the upper arm,
and the foot (as well as the shoe) was a part of the lower leg. Therefore,
the upper arm’s length was set as the distance from the elbow to the palm.
The upper leg’s length was set as the distance from the crotch to the knee
along the inner thigh. The lower arm’s length was set as the distance from
the axilla (the sleeve’s crotch) to the elbow. The lower leg’s length was set
as the distance from the knee to the arch. Note that all the measurement
was done with the clothes, as the data utilized in the experiment was with
clothes on. Therefore, for accuracy, we counted the wear’s thickness in the
measurement. The shoe elongated the lower leg. The clothes made the body
fatter, which shortened the lower arm. The trousers made the crotch lower
and thus shortened the upper leg.

We admit that the anatomical length is a good measurement to evaluate
the skeleton of human beings. However, compared to the human-model-based
pose estimation, the unsupervised skeleton extraction’s potential application
is to discover the “unknown” dynamic skeleton of any “unfamiliar” object
without any prior knowledge. Thus, we evaluate our algorithm by how much
the extracted skeleton objectively reflect the actual object deformation and
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the actual segment length in appearance. Therefore, the anatomical length
is not utilized.

In Experiment 3, the box chain was successfully divided into four seg-
ments. The segments’ extracted length and the real length were compared
for evaluation. In Experiment 4, the vacuum cleaner was divided into four
segments, the pipe segment, the stick segment, the handle segment and the
box segment. As the handle segment’s length was greatly affected by the
arm’s motion, and the box segment did not cover the whole body of the vac-
uum cleaner after background subtraction, we just selected the pipe segment
and the stick segment as reliable segments for evaluation.

The segments’ extracted length in Experiment 1–4 is evaluated in Table 1.
Generally, the unsupervised learned skeleton successfully reflects the ob-

ject’s true articulated structure. However, the automatically extracted skele-
tal pose cannot be as accurate as the model-based pose estimation, and the
reasons are summarized as follows: (1) The small intra-segment deformation
(such as the changes of clothes’ wrinkles) brings errors to the body segmenta-
tion. (2) The clothes smooth the sharp limbs motion, which makes it difficult
to determine the joints’ positions. E.g. Crotches of trousers and sleeves s-
mooth the motion of arms and legs. As a result, sometimes, the upper arms
contain small parts of the chest, and the upper legs are shorter than usual.
(3) Noise causes some small errors in the 3D non-rigid matching.

Although noise brings some error into the 3D point tracking, the error is
not accumulated over frames. Besides, our tracking is not robust to large oc-
clusion. Only the 3D point cloud sequence without other information (such
as the RGB color) is not sensitive enough to detect the column-shape seg-
ment’s axial rotation (E.g. arm’s axial rotation). We assume two points on
the same body segment should keep similar distances over frames, but the
assumption fails when the expansion and contraction of the object size exist.
E.g. A man is blowing a balloon.

5.7. Quantitative comparisons and evaluation

In this section, we utilized Sequence 5 to compare our method with the
marker-based motion capture system. Moreover, we conducted the 3D point
matching with five sets of different parameters to evaluate the coarse-to-fine
strategy’s performance in the time/memory cost reduction.

Experimental settings: We utilized the Kinect to collect the 3D point
sequence of the upper body (Sequence 5), as shown in Fig. 13(a1–a5). The
RGB video was not required by our approach. The 3D point sequence was
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Figure 12: The marker-based motion capture system, the Kinect and markers on the body.
Five hark cameras are used.

collected with the frame rate of 6.67 fps. The resolution of the depth image
was 160×120. In each frame, there were 1221 points on the object on average.
Meanwhile, the marker-based motion capture system tracked 10 markers on
the upper body with the frame rate of 100 fps. These markers were fixed on
the forehead, the neck, the shoulders, the elbows, the wrists, the chest center,
and the abdomen center. Fig. 12 illustrates our experimental settings.

Comparison with the marker-based motion capture: We con-
ducted the quantitative comparisons between our system and marker-based
motion capture system. For the extracted skeleton in each frame, the head
length, upper arm length, lower arm length and arm total length were cal-
culated. Because the length of body segments in the marker-based motion
capture system only measured the distance between two markers (not the
body segment’s real length), we used the standard deviation of the body
segment length to evaluate the stability of the extracted skeleton. Then, we
compared the animation performances in the marker-based motion capture
and in our extracted-skeleton-based motion capture.

The average 3D point number of the “a man” data and the “the upper
body” data in each frame was similar—1526 and 1221 respectively, and their
point resolutions were also similar. Hence, we set the same parameters in
the non-rigid matching: The 8-level coarse-to-fine matching procedure in
the estimation step, and the 6-level coarse-to-fine matching procedure in
the modification step. The sphere radiuses decreased from 50cm to 4cm
exponentially. Fig. 13(b1–b5) shows the modified deformation between the
first frame to other frames, and Fig. 13(c1–c5) shows the extracted skeleton.

To evaluate the stability of the extracted skeleton, we compared the seg-
ment length’s standard deviation in our extracted skeleton with the length
variation in the marker-based motion capture. Table 2 shows the standard
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Figure 13: Comparison with marker-based motion capture. (a1–a5) show the object’s
poses in 5 video frames. Lines in (b1–b5) show the deformations from the first frame to
the other frames. (c1–c5) show the extracted skeleton with joint points. (d1–d5) show the
motion capture result based on the extracted skeleton. (e1–e5) show the skeleton obtained
from marker-based motion capture system. (f1–f5) show the marker-based motion capture
result.
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Extracted skeleton from Marker-based motion
the Kinect data (cm) capture (cm)

Left upper arm 2.54 4.68
Left lower arm 3.56 0.75
Right upper arm 6.48 3.66
Right lower arm 4.85 1.21
Head 2.41 0.28

Table 2: The body segment length’s standard deviation in the extracted skeleton and the
marker-based motion capture

deviations of body segment lengths in our extracted skeleton and in the
marker-based motion capture system. The markers on the shoulder were
fixed on the T-shirt (not directly fixed on the body), which made a relative-
ly large standard deviation of the upper arm’s length in the marker-based
motion capture.

Time/memory cost analysis: The 3D point tracking takes most of
the memory space and computational time. We propose a coarse-to-fine 3D
point matching method to reduce its time/memory cost. To evaluate the
performance of the coarse-to-fine strategy, the 3D point matching with five
sets of different parameters was utilized to matching points between two
neighboring frames, as follows:

1. The single-level matching: For each point, at most 90 candidate match-
ing points were uniformly selected inside the sphere with its radius of 50cm.

2. 6-level 20-candidate coarse-to-fine matching: In each level, at most 20
candidate matching points were selected. The sphere radius decreased from
50cm to 4cm exponentially.

3. 3-level 20-candidate coarse-to-fine matching: In each level, at most 20
candidate matching points were selected. The sphere radius decreased from
50cm to 4cm exponentially.

4. 6-level 5-candidate coarse-to-fine matching: In each level, at most 5
candidate matching points were selected. The sphere radius decreased from
50cm to 4cm exponentially.

5. 3-level 5-candidate coarse-to-fine matching: In each level, at most 5
candidate matching points were selected. The sphere radius decreased from
50cm to 4cm exponentially.

The single-level matching is the 3D point matching without the coarse-
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to-fine strategy, and the other four kinds of matching are the coarse-to-fine
3D point matching. The candidate matching point number was set to 90 in
the single-level matching due to the memory limitation. Only 1/4 of the 3D
points in Sequence 5 (304 points per frame on average) were utilized in the
five kinds of 3D point matching to ensure that all the points inside the 50cm
matching sphere could be selected as the candidate matching points in the
single-level matching.

We utilized MATLAB R2008a to realize our system. We tested the real
time/memory cost on a computer with Intel(R) Core(TM) i7 CPU M640
2.80GHz. The coarse-to-fine point matching process took most of the com-
putational time and memory in the whole skeleton extraction framework.

We utilized the coarse-to-fine strategy to reduce the large time/memory
cost of the point matching process. In each level of the matching, let each
node have at most k candidate matching points in total. The variable number
for the energy minimization problem is |V |k, where |V | is the average node
(point) number in the MRF. The matching time cost for each pair of frames
is O(NL|E|k2), where N is the level number, L is the iteration number
of the TRW-S to minimize the total energy of the MRF, and |E| is the
edge number in the MRF. The total time cost for the 3D point tracking
is O(|F |(Ne + Nm)L|E|k2), where Ne is the level number in the estimation
step of the tracking, Nm is the level number in the modification step of the
tracking, |F | is the total frame number. Note that we set a energy threshold
(0.00001) for the MRF, and the growth of the variable number (k) increased
the iteration number L for TRW-S to meet the energy threshold. We stored
the state transition matrices, so the memory cost for matching is O(|E|k2).

The real average time/memory cost for the 3D point matching with the
five sets of different parameters are shown in Table 3.

The matching performances with the five sets of different parameters as
shown in Fig. 14. Some nodes (points in the MRF) in the single-level match-
ing (k = 90, N = 1) were wrong matched. We set a large pairwise interaction
penalty τ to prevent two nodes from matching to the same candidate match-
ing point (in Equation 3). Thus, if there were some many-to-one matching
conditions in some local areas, some nodes would be wrong matched. How-
ever, in the coarse-to-fine 3D point matching (N > 1), the sphere for the
candidate-matching-point selection was large in low matching levels, and
there were a large number of points inside the sphere, so we avoided the
wrong-matching problem by selecting different candidate-matching-point set-
s from the sphere for different nodes. In high matching levels, this problem
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Candidate Level Iteration Time per Total Memory
matching number number iteration time cost

point number per level (second) (second) (KB)
1 90 1 3813.3 0.09316 355.2 118062.7
2 20 6 1473.9 0.00652 57.67 5834.3
3 20 3 1185.3 0.00665 23.7
4 5 6 503.3 0.00099 3.0 408.9
5 5 3 578.9 0.00096 1.6

Table 3: The average time/memory cost of matching two frames

might occur, but the matching errors were reduced within a small range by
the previous-level matching. On the contrary, in the single-level matching
(N = 1), all the points inside the sphere were selected as the candidate match-
ing points, and the neighboring nodes shared their most candidate matching
points, so the local many-to-one matching could not be avoided. Therefore,
the single-level matching produced some large-range matching errors.

Besides, the computation complexity of the integral-geodesic-distance fea-
ture for all the points in each frame is O(|V |3), where |V | is the node number
in the MRF. It took 0.35s on average to calculate the integral-geodesic-
distance feature for each frame of Sequence 5 (|V | = 304, here). The compu-
tation complexity of the body segmentation and the joint point determina-
tion is O(|F ||V |2). The computation complexity of the skeleton generation
is O(|F ||V |), where |F | is the total frame number. It took 0.18s on average
for the body segmentation, the joint point determination and the skeleton
generation.

6. Conclusion and discussion

The paper presents a novel skeleton extraction algorithm by using the
3D point sequence, and the extracted skeletons can be easily used for the
motion capture. Generally, the unsupervised learned skeleton successfully
reflects the object’s true articulated structure. Though the unsupervisedly-
extracted skeleton cannot be as accurate as the model-based pose estimation,
our proposed system can discovery the the dynamic topological structure of
the “unknown” object.
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Figure 14: The matching performances with five sets of different parameters. The cause
of the matching error in the singe-level matching (N = 1) is analyzed in the text.

The integral geodesic distance is utilized as the point feature in the non-
rigid matching, and it is a good feature for 3D object retrieval. However, the
integral geodesic distance is sensitive to changes of the object’s topological
structure. E.g. If a man folds his hands together, the integral geodesic
distance of his hands will decrease greatly. One possible solution is to utilize
some 3D local features, but 3D local features have their own problems: (1)
Usually, reliable 3D local features only exist in “edges” and “corners”, so
they are not suitable to deal with smooth-surface objects. (2) Compared to
well-constructed 3D models, the Kinect 3D point cloud cannot provide many
reliable local features due to noise. Another possible solution is to combine
the integral geodesic distance with the RGB color in tracking.
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