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By mining “big 

GPS records” of 1.6 

million users, an 

intelligent system 

automatically 

discovers, analyzes, 

and simulates 

population 

evacuations during 

the Great East Japan 

Earthquake and the 

Fukushima Daiichi 

nuclear accident.

6,142 injured, and 2,668 missing persons.2 
As many as 128,801 buildings were dam-
aged or destroyed.2 The earthquake and the 
tsunami that followed severely damaged the 
Fukushima Daiichi nuclear power plant, 
causing the most extensive release of radio-
activity since the 1986 Chernobyl accident 
in the Ukraine.3 

The three separate events (earthquake, 
tsunami, and radioactive material release) 
created an unprecedented composite disas-
ter that significantly impacted the people of 
Japan. In the wake of a disaster of this mag-
nitude, there’s an urgent need to develop an 
intelligent system able to objectively record 
people’s movements following the event, an-
alyze their behavioral patterns, and simulate 
or predict human mobility for future disas-
ter mitigation. The types of data, evacuation 
behavior patterns, and simulation models 
available following the Japanese earthquake 

and nuclear power plant meltdown are 
unique in human history, and are likely to 
play a vital role in future disaster relief and 
management worldwide.

In this article, we introduce the novel Di-
saster Behavior Analysis and Probabilistic 
Reasoning System (DBAPRS) to analyze 
and simulate people’s evacuation behaviors 
during the Great East Japan Earthquake 
and the Fukushima nuclear accident. (For 
others’ work in this area, see the related 
sidebar.) DBAPRS is an intelligent system 
that stores and manages daily GPS records 
from approximately 1.6 million individuals 
throughout Japan over a one-year period 
(from 1 August 2010 to 31 July 2011). By 
mining this large dataset of spatially ref-
erenced mobile sensor data, DBAPRS can 
automatically discover and analyze evacu-
ation behaviors of people during the di-
sasters. Meanwhile, DBAPRS constructs 

The 9.0 magnitude Great East Japan Earthquake1 occurred on 11 March 

2011 off the east coast of Honshu, Japan’s largest island. This was the 

most powerful recorded earthquake in Japan and one of the world’s five most 

powerful earthquakes.1 The human toll of this disaster was 15,881 deaths,
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a simulation model that can be ef-
ficiently trained by using these dis-
covered evacuation behaviors. This 
model helps us better understand hu-
man evacuation behaviors in general, 
and understand how those behav-
iors are impacted by various cities’ 
states and social connections during 
disasters.

Moreover, based on the training 
model, DBAPRS can simulate or pre-
dict population mobility in various 
cities throughout Japan in an effort to 
inform future disaster relief and man-
agement. We believe that the data 
and results obtained by this system 
have enormous value and significance 
because they objectively and precisely 
reflect the behavior of people facing 
the huge, composite disasters. This 
will contribute to various research 
fields such as disaster prevention and 
management, civil engineering, intel-
ligent transportation, urban manage-
ment, and so on.

Overall System
Figure 1 illustrates the DBAPRS ar-
chitecture, which contains four mod-
ules: database server and visualization, 
discovery and analysis, learning, and 
probabilistic reasoning. The database 
server and visualization module stores 
and manages the GPS data for all peo-
ple being tracked. The discovery and 
analysis module analyzes people’s be-
haviors during the disaster, and auto-
matically discovers long- or short-term 
population evacuations. The learning 
module uses the discovered evacua-
tion behaviors to build a probabilis-
tic model. The probabilistic reasoning 
module simulates or predicts popula-
tion mobility or evacuations in various 
cities impacted by possible disasters 
throughout Japan.

Database Server and 
Visualization
The database server of DBAPRS 
stores and manages GPS records of 

approximately 1.6 million anonymized 
users throughout Japan from 1 August 
2010 to 31 July 2011; it now contains 
approximately 9.2 billion GPS records 
and more than 600 Gbytes of comma-
separated value (CSV) files. The data-
base server and visualization module 
preprocesses these data, providing in-
dexing, retrieval, editing, and visual-
ization services for users. Moreover, the  
visualization module visualizes these 
data in various styles, such as raw 
GPS records, travel trajectories, travel 
directions, and so on (see Figure 2), 
and some parts of the visualization 
module are based on Google Earth.

Discovery and Analysis Module
Generally speaking, most severe di-
sasters cause large population move-
ments or evacuations. Obviously, 
analysis of these short- and long-term 
evacuation behaviors will play a vi-
tal role in future disaster relief and 
management worldwide. Hence, we 

Recently, a number of studies on human mobility pat-
terns during disasters have been proposed,1,2 mainly 
focusing on small-scale and short-term emergencies 

(for example, crowd panics and fires). However, research on 
the dynamics of population movements on a national scale 
during large-scale disasters (such as earthquakes, tsuna-
mis, and hurricanes) is limited, most likely due to difficul-
ties in collecting representative longitudinal data in places 
where infrastructure and social order have collapsed and 
where study populations are moving across vast geographi-
cal areas.3 Recently, smartphones and PDAs, which are typi-
cally equipped with GPS sensors, have become ubiquitous 
in daily life. Mobile sensor data from these devices offer a 
new way to circumvent methodological problems of ear-
lier research, because they offer high temporal and spatial 
resolution, have no interview bias, and provide longitudinal 
data for large populations.3–5

Xin Lu and his colleagues collected data from 1.9 mil-
lion mobile users in Haiti to analyze population displace-
ment after the 2010 Haitian earthquake, which was the first 
study to analyze large-scale human-mobility patterns after 
a severe disaster.3 They concluded that people’s evacua-
tion patterns following the natural disaster were highly 
correlated with their daily movements prior to the event. 
However, human-mobility patterns after the Great East 
Japan Earthquake were different from those following the 
2010 Haitian earthquake for two reasons. Large population 
movements in Japan were caused by the Fukushima Daiichi 

nuclear accident in addition to the major earthquake and 
tsunami. Compared to more common natural disasters (for 
example, earthquakes and tsunamis alone), serious releases 
of radioactivity have been historically rare. Facing the most 
extensive release of radioactivity since 1986, human-mobil-
ity patterns were expected to differ from previous ones. In 
addition, the land area of Japan is much larger than that 
of Haiti, and evacuation behaviors in Japan were therefore 
more geographically complicated. Therefore, in the study 
discussed in the main article, we try to develop a system to 
analyze and simulate population mobility in large-scale di-
sasters of Japan. 
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designed the discovery and analysis 
module to discover human evacua-
tion behaviors during the Great East 
Japan Earthquake and the Fuku-
shima Daiichi nuclear accident. To 

achieve this task, DBAPRS used sev-
eral months of data collected before 
the earthquake (1 October 2010 to 11 
March 2011) to compute geographic 
location information for individual 

people (see Figure 3). By measuring 
the similarity of this distribution be-
fore and after the earthquake, we dis-
covered people’s evacuation behaviors 
at different sampling periods.
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Figure 1. System overview. The Disaster Behavior Analysis and Probabilistic Reasoning System (DBAPRS) contains four modules: 
database server and visualization, discovery and analysis, learning, and probabilistic reasoning. DBAPRS uses (a) the geographic 
location distribution and (b) the training samples of people’s evacuations to construct an evacuation graph. To learn, the 
simulation model has two stages: (c) evacuation graph construction and (d) Markov decision process learning. (e,f) Based on the 
trained probabilistic model, the system can automatically simulate or predict the population mobility in impacted cities.

From 00:00 JST, 12 March 2011
to 23:59 JST, 14 March 2011.

Tokyo, 14:37 JST, 11 March
2011

Tokyo, 15:02 JST, 11 March
2011

Tokyo, 14:44-14:48 JST, 11 March 
 2011
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Figure 2. Visualization of the DBAPRS data in various styles. (a) The people’s raw GPS recordings in Tokyo, from 14:44 to 14:48 
JST, 11 March 2011 (the time when the earthquake occurred). (b) Some examples of the people’s movements after the disasters. 
Different colors denote different persons. (c, d) Direction map and trajectories of all the people in the Greater Tokyo Area 
before and after the earthquake, respectively. Here, the colors denote people’s travel directions. See http://shiba.iis.u-tokyo.
ac.jp/song/?page_id=50 for the demonstrations.
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For each person, the geographic 
location history is a series of geo-
graphic positions including longitude, 
latitude, and time period. Let Xk(t, 
Tperiod) = {pk(t, d) : d ∈ Tperiod} de-
note the geographic location history 
of person k in time t(t ∈ Ttime) dur-
ing period Tperiod, where pk(t, d) is the 
geographic position in time t of day d. 
The geographic location distribution 
is represented by K bins distributed by

Lk(t, Tperiod) 
= {ψ (n; σ (pk(t, d)), d ∈ Tperiod)}n = 1,…, K,

where σ (pk(t, d)) is a function that 
computes the bin index associated 
with the geographic location, and ψ 
(n; σ (pk(t, d)), d ∈ Tperiod) denotes the 
probability that person k will appear 
in location index n at time t during the 
period Tperiod. Figure 3 shows an ex-
ample of this distribution. Based on the 
analysis of this distribution, DBAPRS 
can also find some regular and impor-
tant places for each person, such as 
home, working areas, and so on.

To discover the evacuation routes 
and locations during the disasters, 
DBAPRS computes the similarity of 
geographic location distribution for 
an individual before and after the 
earthquake, and if the similarity is 

small enough, this person’s behavior is  
classified as an evacuation (as shown 
in Figures 3 and 4). Here, we use a 
Jaccard coefficient to measure this 
similarity due to its efficiency, and we 
calculate the coefficient a for before 
earthquake period Tperiod

before  and after 
Tperiod

after  as follows:
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Therefore, based on this similarity, 
the system can automatically dis-
cover people’s evacuation routes and 
locations across the entire country in 
the short- or long-term by mining the 
auto-GPS mobile sensor database.

Learning Module
To effectively understand, simulate, 
and predict human mobility during 
severe disasters, DBAPRS builds a 
probabilistic model and uses the dis-
covered human evacuation behaviors 
(movement trajectories during the 
disasters, as shown in Figure 1a) to 
train its parameters via the machine 
learning technique (see Figure 1b). 

In this research, we assume that the 
stored auto-GPS mobile sensor data 
in DBAPRS are representative of the 
general population’s movements dur-
ing disasters. The creation of this type 
of predictive model is possible be-
cause social interactions, transporta-
tion networks, and political responses 
in some given cities (except for some 
highly destroyed cities) are typically 
stable through time, and large popu-
lation movements (which are often 
influenced by these conditions) are 
likely to remain the same following 
disasters.

To learn the simulation model, 
DBAPRS has two stages: evacuation 
graph construction (as shown in Fig-
ure 1c) and Markov decision process 
(MDP) learning (as shown in Figure 
1d). First, DBAPRS constructs the 
people’s evacuation graph in some af-
fected regions, revealing and modeling 
population movements or evacuations 
between different disaster areas. Be-
cause most public transportation sys-
tems were usually not available after 
the large-scale disasters occurred, we 
couldn’t use transportation networks 
for building it. Hence, DBAPRS uses 
the geographic location distribution 
(see Figure 1a) and the training samples 
of people’s evacuations (see Figure 1b)  

(a) (b)

Figure 3. Examples of people’s geographic location distribution before and after the earthquake. The size of the circles indicates 
the probability of an individual person staying in a location at a specific time; larger circles indicate a higher probability that 
people stay or live there. Blue and orange circles indicate this distribution before and after the earthquake, respectively. The 
geographic location distribution of (a) a single person, and (b) multiple persons before and after the earthquake.
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to construct the graph through col-
laborative learning.4 In this graph, 
the nodes usually denote some disas-
ter areas (cities or regions) affected 
by the disasters, and the edges indi-
cate some important evacuation routes 
among these disaster areas (see Fig-
ures 5a–5e). Second, given the learned 
evacuation graph, DBAPRS builds the 
simulation model based on the MDP. 
Here, the evacuation graph provides 
a deterministic MDP, the geographi-
cal region (nodes) is considered a state, 
the edge is the action, and the path is 
the people’s evacuation trajectory (as 
in Figure 1d). These evacuation trajec-
tories can be parameterized by their 
path feature (for example frequency 
of used routes, travel time, and so on). 
Hence, DBAPRS uses these parame-
terized evacuation trajectories to train 
the parameters of MDP via inverse 
reinforcement learning.5 Last, based 
on the trained probabilistic model, 

population mobility in various cities 
impacted by the disasters throughout 
the country is automatically simulated 
or predicted via probabilistic inference 
(see Figures 1e and 1f). More technical 
details are provided elsewhere.6

Probabilistic Reasoning
Based on the training model, we can 
simulate or predict people’s evacuation 
or movements for similar future disas-
ters. DBAPRS uses the Bayes’ rule to 
perform the probabilistic inference: 
given the partial observed evacuations 
(such as some evacuations during the 
first several hours or days after disas-
ters), ζA→B, the posterior probability of 
the destinations is computed by

P(dest|ζA→B, f) ∝ P(ζA→B|dest, f) P(dest),
� (1)

where P(dest) is the evacuation prior 
probability in a region A, and which 

we can compute by popular route 
inference4 in the evacuation graph. 
P(ζA→B|dest, f) is the likelihood of 
observed evacuations, where f is 
the learned parameters of the MDP 
model and is computed by taking the 
sums over paths from region A to re-
gion B to each possible destination 
using the forward-pass algorithm5 in 
the learned MDP model.

Hence, we can simulate and predict 
possible evacuation routes and desti-
nations by the maximum a posteriori 
estimation of Equation 1.

Experimental Results
Figure 4 shows evacuations that 
DBAPRS discovered at different peri-
ods of the disasters in Fukushima, Mi-
yagi, and Iwate prefectures. From these 
results, we found distinct patterns of 
human movement in each of the peri-
ods following the earthquake and nu-
clear disaster. Some evacuations began 
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Figure 4. The discovered evacuations at different stages of the disasters in Fukushima, Miyagi, and Iwate prefectures. (a–e) 
The orange lines indicate the discovered evacuations that connect people’s old and new primary residential areas. (f) The total 
travel distances of the discovered evacuations at different stages. (g) Residential populations before (blue) and after (orange) 
the earthquake. Larger circles indicate higher population densities. We analyzed the statistics in 10 × 10-km grids.
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prior to the first time period, as people 
responded to the earthquake and tsu-
nami themselves (see Figure 4a).

During the first period follow-
ing the nuclear accident, we believe 
that most people in the Fukushima, 

Miyagi, and Iwate prefectures didn’t 
understand the serious nature of the 
release of nuclear materials despite 
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(t)
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Figure 5. Evacuation graph and the simulation results. (a−e) The constructed evacuation graph for Fukushima, Miyagi, and Iwate 
prefectures at different stages of this disaster. Nodes denote important areas (for example, residential areas before and after 
the disaster, and some stopovers) where evacuation behaviors were observed; edges represent people’s movements during 
the disaster (the edge value is normalized from 0 to 1). Circle size denotes node weights (nodes with very small weights aren’t 
displayed in these figures). The edge color indicates the edge parameters. Circle color indicates the area type. Higher values 
represent areas from which people evacuated; lower values are areas where people sought refuge. This value is also normalized 
from 0 to 1. (f−t) Simulation results of people’s evacuations at different stages following earthquake and nuclear accident in some 
major disaster areas, including (f−j) Minamisoma, (k−o) Iwaki, and (p−t) Ishinomaki. Given a specific area (red circle), the possible 
destinations and routes are simulated by the green circles. A green circle’s size indicates the probability that large populations will 
evacuate to this area; larger circles indicate higher probabilities. Trajectories show the possible movements of these evacuations; 
and the color shows the probability normalized from 0 to 1.
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government declarations of an emer-
gency situation in those prefectures. 
Hence, only small numbers of peo-
ple began to evacuate over short dis-
tances at this time (see Figures 4b).

Over the second period, when people 
began to better understand the accident’s 
seriousness, the number of evacuations 
and travel distances substantially in-
creased (see Figure 4c). The number of 
evacuations and travel distances contin-
ued to increase over time period three as 
news reports began to describe the nu-
clear event (see Figure 4d). 

Finally, during the fourth period, 
the number of evacuations and travel 
distances began to decrease (see Fig-
ure 4e) despite the fact that the main-
stream worldwide media dubbed the 
Fukushima Daiichi nuclear accident 
as one of the most serious accidents 
in human history. We believe this was 
because most people who had pre-
viously evacuated to safe places in 
days prior chose to return home or 
had found a safe place to stay. Fig-
ure 4f graphs the data from these im-
ages. Meanwhile, to get an overview 
of population distribution before and 
after the earthquake, DBAPRS pres-
ents the residential distributions in 
Fukushima, Miyagi, and Iwate pre-
fectures 161 days before and 20 days 
after the earthquake (see Figure 4g).

Figures 5a through 5e show the con-
structed evacuation graph for the Fuku-
shima, Miyagi, and Iwate prefectures 
and corresponding simulation results 
of some major disaster areas at differ-
ent stages of this event. According to 
these results, we found that certain pat-
terns of human movement in each of 
the prefectures were linked. Because 
Minamisoma and Iwaki were both 
heavily impacted by the earthquake, 
tsunami, and nuclear accident, popula-
tion mobility in these locations shared 
similar characteristics (see Figures 5f 
through 5o). From 11 March to 14 
March 2011, evacuations were heavily 

concentrated in nearby cities or shel-
ters as people lost their homes due to 
the earthquake and tsunami. From 15 
March to 31 March 2011, the Fuku-
shima Daiichi nuclear accident became 
more serious, and the range of evacua-
tions became substantially larger from 
those prefectures. However, patterns of 
evacuation from Ishinomaki (where the 
impact of the composite disaster was 
less severe), were different (see Fig-
ures 5p through 5t).

From 11 March to 31 March 2011, 
evacuations were concentrated in 
specific regions and didn’t change 
through time, although some people 
in Ishinomaki extended their evacu-
ation range between 20 March and 
23 March 2011 (see Figure 5s). We 
think that people might have stayed 
in place because the earthquake and 
tsunami had seriously destroyed two 
regions; also, due to the grief people 
felt at losing houses or relatives, many 
seemed to not care about the radioac-
tive releases, even though they weren’t 
far from the Fukushima Daiichi Nu-
clear Power Plant. These people just 
wanted to find a safe place to stay.

To evaluate simulation results, 
DBAPRS performed K-fold cross-val-
idation. Here, we used evacuation 
trajectory samples from Fukushima, 
Miyagi, and Iwate prefectures during 
11 March to 31 March 2011. DBAPRS 
randomly partitioned these samples 
into three subsamples: one sample 

was used as validation data while the 
other two were used as training data. 
The cross-validation process was then 
repeated three times, with each sub-
sample used exactly once as valida-
tion data. For each repetition, DBAPRS 
computed the Jaccard similarity co-
efficient between simulation results 
obtained by the training model and 
real evacuation distribution in testing 
samples for some major disaster areas 
(high-weight nodes in Figure 5’s evacu-
ation graph). Here, we used the similar-
ity coefficient as simulation accuracy, 
which Table 1 shows. From this evalu-
ation, we see that the accuracies for in-
dividual cities or regions ranged from 
75.38 to 88.36 percent, with the major-
ity higher than 80 percent.

In this study, we’ve demonstrated 
that the accurate simulation or pre-

diction of large population mobility 
in severe disasters is possible. Further, 
on the basis of DBAPRS results, we 
found that in regions instantaneously 
impacted by the earthquake and tsu-
nami, large numbers of people sought 
immediate refuge in nearby cities or 
government shelters. However, in re-
gions more impacted by the release of 
nuclear materials, evacuation patterns 
were highly influenced by government 
declarations and news reports. Evac-
uations became substantially more 
extended and disorderly as people 

Table 1. Simulation accuracy.

Area (prefecture) Simulation accuracy (%)

Minamisoma (Fukushima) 85.38

Futaba (Fukushima) 88.36

Iwaki (Fukushima) 83.29

Koriyama (Fukushima) 81.35

Ishinomaki (Miyagi) 84.67

Onagawa (Miyagi) 86.37

Kesennuma (Miyagi) 82.38

Wakabayashi Ward, Sendai (Miyagi) 77.35

Miyako (Iwate) 82.38

Kamashi (Iwate) 75.38

Hanamaki (Iwate) 81.59
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became informed of the significance 
of the radioactive materials being re-
leased as a result of the disaster.

We note several limitations within 
this system and our study. The dataset 
of population movements used was 
constructed from mobile devices and 
didn’t incorporate data from some 
representative portions of the popula-
tion (that is, people who didn’t own 
mobile devices or didn’t register for 
GPS service couldn’t be incorporated 
into this study). Additionally, data 
were slightly biased toward younger 
age groups who were more likely to 
own GPS-based equipment than older 
age groups. However, we’re confident 
that the data, which offers movement 
behaviors for the approximately 1.6 
million people included in the data-
set, are reflective of general movement 
patterns in the country following the 

composite disaster. A second limita-
tion of this system was related to the 
difficulty in extrapolating movement 
patterns predicted by DBAPRS for use 
in places outside of Japan in places 
not affected by this disaster. Actually, 
the prediction or simulation is avail-
able only for some highly affected 
cities or regions in the east of Japan. 
Moreover, the actual performance of 
DBAPRS was sometimes difficult to 
fully evaluate. Further study is needed 
during similar events, even though we 
hope that similar events never occur.

For future work, this research can 
be extended and improved. Obvi-
ously, people’s evacuation patterns 
are complicated and influenced by 
various factors (such as media cover-
age, city characteristics, and so on). 
Fortunately, the simulation model of 
DBAPRS is a general model, and we 

can easily add these types of informa-
tion for consideration. Hence, we need 
to study more factors that influence 
human mobility and thereby develop a 
more accurate simulation model.
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