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Abstract— A large category model base can provide object-
level knowledge for various perception tasks of the intelligent
vehicle system. The automatic and efficient construction of such
a model base is highly desirable but challenging. This paper
presents a novel semi-supervised approach to discover possible
prototype models of 3D object structures from the point cloud
of a large and complex environment, given a limited number of
seeds in an object category. Our method incrementally trains
the models while simultaneously collecting object samples.
Considering the bias problem of model learning caused by bias
accumulation in a sample collection, we propose to gradually
differentiate the standard category model into several sub-
category models to represent different intra-category structural
styles. Thus, new sub-categories are discovered and modeled,
old models are improved, and redundant models for similar
structures are deleted iteratively during the learning process.
This multiple-model strategy provides several interactive op-
tions for the category boundary to deal with the bias problem.
Experimental results demonstrate the effectiveness and high
efficiency of our approach to model mining from “big point
cloud data”.

I. INTRODUCTION

An all-embracing category model base can directly pro-
vide high-level knowledge for AI tasks, such as object
detection, segmentation, and tracking. Mining such bases
from “big data” with a minimum human labeling has become
an important AI area, which provides a continuous challenge
to state-of-the-art algorithms. [38], [39] have recently been
proposed to use a single labeled object to mine category
model bases from cluttered RGB or RGB-D images.

Therefore, in this paper, we propose a semi-supervised
method to learn category models from unlabeled “big point
cloud data”. The algorithm only requires to label a small
number of object seeds in each object category to start
the model learning, as shown in Fig. 1. Such design saves
both the manual labeling and computation cost to satisfy the
model-mining efficiency requirement.

We propose an iterative framework for collecting object
samples and learning models, as shown in Fig. 2. Con-
sidering a large intra-category variation, we differentiate
an entire object category into different structural styles as
sub-categories, and use multiple models, each representing
the structural distribution of the object samples within a
sub-category. These sub-category models are incrementally
learned along with sample collection. During the model
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Fig. 1. Given an unlabeled point cloud of a large urban environment and a
small number of object seeds in a category, we aim to mine a set of models
to provide object-level knowledge for point labeling. The point cloud of
a large environment can be considered as a kind of “big data”, and thus
we propose to limit both the manual labeling and the computation cost to
ensure a high efficiency for model mining.

learning, new sub-categories are discovered, similar sub-
categories are merged, and models for the old sub-categories
are gradually improved.

Unlike semi-supervised model learning based on image
search engine results [16], the bias1 problem is still in-
tractable without the sifting of the search engine in large and
complex environments. Owing to large intra-category shape
variations and the prevalence of occlusions, object collection
bias during the initial learning steps will affect further model
learning, and errors will be accumulated into a significant
model bias. The multiple-model strategy is a plausible way
of dealing with the bias problem. Newly collected samples
only affect models of their own categories, and the growth of
the sample collection bias is therefore limited within certain
biased sub-categories. We manually eliminate the biased
models after the learning process is complete, to provide
the correct category boundary.

The main contributions of this research can be summarized
as follows. 1) To the best of our knowledge, this is the
first proposal for an efficient mining of category models
from “big point cloud data”. With limited computation and
human labeling, the method is oriented toward an efficient
construction of a category model base. 2) A multiple-model
strategy is proposed as a solution to the bias problem, and
provides several discrete and selective category boundaries.

II. RELATED WORK

Point cloud processing has developed rapidly in recent
years. In this section, we discuss a wide range of related

1Without sufficient manual labeling, the model may either over fit to some
special sub-categories within the target category, or shift to other categories
in the incremental learning process.



Fig. 2. What is a feasible and efficient way to mine category models? Given a limited number of 3D point clouds of the object seeds in an object category
and a real 3D environment, our algorithm is able to automatically collect object samples with a large intra-category variation and learn the category model.
In this iterative framework, blue and red rectangles indicate the inputs and outputs, respectively.

work to provide a better understanding of our method of
category model mining.

Knowledge mining: The segmentation and classification
(point labeling) of 3D point clouds are two kinds of 3D
environment understanding [25], [26], [27], [28], [29], [30],
[31], [32], [33], [36], [37]. [34] focus on unsupervised
segmentation of 3D point clouds based on local features.
Other studies have contributed to the learning of common
structures of different categories from well-segmented 3D
objects [13]. Munoz et al. [25], [33], Triebel et al. [26],
and Anguelov et al. [32] made a breakthrough when they
employed associative Markov networks (AMNs) with a max-
margin strategy for supervised point cloud classification and
segmentation.

However, knowledge mining is mainly required to be ap-
plied to unlabeled data in an unsupervised or semi-supervised
manner. In addition, knowledge mining should focus on the
learning of a general model for objects within an entire
category, rather than just collecting a number of individual
object samples based on local segmentation criteria.

Even so, we used the trained models to achieve point label-
ing (although the models can also be applied to other tasks,
such as object retrieval and recognition), and performed
experiments to compare its performance with the classical
supervised AMN-based point classification.

Object-level global structure: A number of pioneering
studies have contributed to the extraction of high and middle
level structural knowledge. Hebert et al. [10] used some high-
level shape assumptions to discover various structures in the
environment, while Ruhnke et al. [19] learned a compact
representation of a 3D environment based on Bayesian
information criteria. Endres et al. [17] used latent Dirichlet
allocation to discover 3D objects. These methods focus on
patterns at the part level, whereas we expected to extract
global structures with the correct object-level semantemes.

Category modeling: Closer to our field of category
model mining, some approaches for the collection of 3D
object samples have been proposed. Herbst et al. [11], [12]
detected which objects had been moved across multiple depth
images of the same scene, and Somanath et al. [22] detected
the same objects appearing in different 3D scenes. Detry et
al. [18] learned a general hierarchical object model from
stereo data with clear edges.

Category model mining is not limited to the segmentation
of objects with a specific shape or to recurrent objects, but
also includes category discovery with large intra-category

shape variations. From this viewpoint, the most closely
related work involves unsupervised repetitive shape extrac-
tion [20], [21] and unsupervised 3D category discovery [1],
where object samples are extracted automatically and clas-
sified into different categories.

By contrast, we aim to learn category models for point
labeling, rather than simply collecting object samples or label
points in a point cloud. The proposed model encodes the
structural knowledge for a whole category with considerable
intra-category variations. Meanwhile, our approach satisfies
the efficiency requirement, i.e. a relatively small amount of
computation and manual labeling, which is important for
model mining from “big point cloud data”. Nevertheless, we
compare our approach with [20], [21] and [1] in experiments
from the perspective of point labeling.

III. ALGORITHM

Our algorithm operates in a bootstrapping framework. We
use current models to collect new samples and estimate
their reliability. Strangely shaped or largely occluded samples
are considered unreliable. Thus, samples are weighted by
their reliability, and this weighting is used as feedback to
refine the current sub-category models and discover new sub-
categories.

A. Preliminaries: category modeling

We extend the cell-based object representation proposed in
our previous work [1] to represent the structure distribution
of samples within a sub-category. We divide the object into
cells, and extract the local shape features from each cell. The
model encodes the point-occupying probability of each cell
and its local feature distributions among the object samples.

We use a cylinder template to describe the cell division,
as shown in Fig. 3. Objects are placed into the 3D space
of a vertical cylinder. The cylinder size is determined by the
actual size of the object seeds. The cylinder is divided into F
floors and L layers (F = 16,L = 8). It is then further divided
into N = 50 parts using radial planes. We therefore obtain a
total of FLN = 6400 cells.

Sample: The sample is placed at the center of the
cylinder. We calculate the local feature for each cell to
represent the shape of the corresponding local point cloud.
Inspired by the spectral analysis of point clouds [23], we
use a cuboid to fit the point cloud in each cell. The edge
length of the cuboid is the square root of the eigenvalues of
the point covariance matrix. We estimate the cuboid volume



Algorithm 1 Learn object models and collect object samples
simultaneously

Input: The point cloud of a large and complex environ-
ment and k pre-labeled object seeds in a category.
Output: A set of models and collected object samples.
Initialization: Generate an initial model from each object
seed to form the initial model set. Initialize the sample set
consisting of the object seeds and their top-ranked matched
samples in the environment.
repeat

1. Use the current models to estimate the reliability of
all samples in the sample set (see Section III-B).
2. Produce new candidate models from the pure breed-
ing of new samples and the hybridization between new
samples and current models (see Section III-C.1).
3. MDL-based model selection using reliability-
weighted samples (see Section III-C.2).
4. Search the top-ranked samples corresponding to the
current models in the environment, and add them to the
sample set (see Section III-B).

until no new samples can be well matched to the models.

using its edge length, and take the volume as the local
feature. Obviously, line-shape cells and surface-shape cells
have small feature values, whereas cloud-shape cells have
large values. The local features of cells that do not contain
any 3D points are defined as none. Thus, an object sample
can be represented as a vector of local features S = <si>,
where i is the cell index.

Model: The model encodes the point-occupying proba-
bility and local feature distributions in each cell, as m = {P,
µ , Var}, where P= <pi>, µ= <µi>, Var= <vari>. For
each cell i, pi indicates its probability of containing points,
and µi and Vari denote the mean value and variance of its
local feature when it contains points, respectively.

Matching: We use object matching to compute similari-
ties between models and samples. As objects are brute-force
searched in the environment (details follow in Section III-
B), they can be simply sampled at the center of the cylinder.
Thus, we only consider horizontal rotations in matching.

For cell i in the sample, θ(i) denotes the corresponding
cell in the model with horizontal rotation θ . The matching
value between model m = {P, µ , Var} and sample S is
calculated as follows:

match(S,m) = max
θ

∑i:si 6=none,pθ(i) 6=0 Celli√
∑i δ (si)∑i pθ(i)

(1)

match(S,m) is normalized based on both the sample and
model sizes. δ (si) is 1 if si 6= none, and 0 otherwise. Celli is
the local matching value of cell i in the sample with rotation
angle θ , and it is assumed to follow a Gaussian distribution:

Celli = pθ(i)G (si|µθ(i),varθ(i)) (2)

where G (·) indicates a Gaussian distribution. Celli is weight-
ed using the point-occupying probability. Similar to [1], the
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Fig. 3. Illustration of cell division in the cylinder. The central cells are
denser, as we assume the object is located in the center, and thus the central
cells are more reliable for object representation. Please see texts and Fig. 10
for detailed explanations of the model.

maximization problem in (1) can be solved via gradient
descent methods with the initial pose estimation, or simply
through an exhaustive search.

Model-based point labeling: Given the object samples
collected by the trained models, we can further apply model-
based object segmentation to the collected samples, thereby
achieving point labeling.

Let M denote the model set. We collect object samples
using these models via a brute-force search in the envi-
ronment. Given a threshold τ , each sample S satisfying
maxm∈M match(S,m)> τ is collected. For the segmentation,
let Ci be a cell in sample S. If the local matching value of
Ci—Celli—is less than 1/3, Ci is removed from S.

B. Incremental sample collection and evaluation

According to Algorithm 1, the initial models are generated
using the object seeds. We then iteratively use the current
models to collect new samples, and use the new samples to
incrementally train the models.

Sample collection: New samples are brute-force
searched and collected from the 3D environment using the
current models m ∈ M. Each model inserts three of its
best matched samples into the sample set, and a threshold
maxm∈M match(S,m) < ε is set as the stopping condition
for the sample collection of model m. Actually, we can use
the initial models to prune the search range to not-so-badly
matched samples during preprocessing, thus greatly reducing
computation of sample collection in further iterations.

Sample evaluation: Not all of the collected samples
have equally reliable shapes. Unreliable samples either do
not contain the target object in their center, or have strange,
largely occluded, or mixed shapes. We use the current models
to estimate the reliability of each sample. As different models
indicate different sub-categories, each sample only needs to
be well matched to its target sub-category. The reliability of
sample S can therefore be formulated as

R(S) = max
m∈M

match(S,m) (3)

.

C. Model learning

Sample collection and model learning are operated alter-
natively, as shown in Algorithm 1. Given the new samples
collected by the current models, model learning has two
steps, i.e. candidate model generation and model selection.
In the first step, new candidate models are incrementally
generated by combining the current models and new samples.
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Fig. 4. Model selection results in the final iteration (a–c) and evolution of the wall models (d). The horizontal axis shows different samples, and the
vertical axis shows the matching uncertainty as defined in (8a). Different curves show the matching uncertainty produced by different candidate models.
The colored curves are for the selected models. The thick lines indicate the best-matched models of the samples after model selection. The samples are
sorted to ensure a monotonic increase in the thick lines for clarity. The selected models an approximate minimization of matching uncertainty.

This incremental model generation ensures that the new
model number is independent of the growth of the sample
number. In the second step, the minimum description length
(MDL) principle is used to select a subset of these candidate
models that best describe the sub-categories of the samples.
In this way, models of new sub-categories may be discovered,
and current sub-categories may be assigned better models.
The model selection results in the final learning iteration are
illustrated in Fig. 4(a–c), and the evolution of the wall models
after different iterations is shown in (d).

1) Candidate model generation: The candidate model
set consists of 1) current models, 2) models generated
through the pure breeding of new samples, and 3) models
generated by the hybridization between new samples and
current models.

Pure breeding of a new sample: Pure breading is used to
produce a new model directly from a sample S. For cell i in
this model, let its (spatially) nearest not-none cell in sample
S be cell j of feature s j. The point-occupying probability is
assumed to follow the Gaussian distribution w.r.t. its distance
disti j, and the local feature distribution is initialized with a
constant variation as

µi = s j, vari = ν , pi=G (disti j|µ
′
= 0,δ

′
= ηR j) (4)

The local feature variance ν can be either pre-defined or
estimated from a seed. R j denotes the distance between the
sample center and cell j.

Hybridization between a new sample and model: This
operation first generates a pure-breeding model ms from
sample S, and then merges ms and the current model m ∈M
into a new model mnew. Let the current model m be generated
on the basis of Γ samples. Thus, mnew merged by m and ms

is a (Γ+ 1)-sample model. Let m and S be matched with
horizontal rotation angle θ , and let cell i in ms correspond to
cell θ(i) in m. µnew

i , varnew
i , and pnew

i in mnew are computed
as

pnew
i =

ps
i + pθ(i)Γ

Γ+1
(5a)

µ
new
i =


µθ(i)pθ(i)Γ+µs

i ps
i

Γpθ(i)+ps
i

pθ(i) 6= 0, ps
i 6= 0

µθ(i) pθ(i) 6= 0, ps
i = 0

µs
i pθ(i) = 0, ps

i 6= 0
none pθ(i) = 0, ps

i = 0

(5b)

varnew
i =



max{ ((µθ(i)−µnew
i )2+varθ(i))Γpθ(i)
Γpθ(i)+ps

i

+
(µs

i −µnew
i )2 ps

i
Γpθ(i)+ps

i
,0.1ν}

pθ(i) 6= 0, ps
i 6= 0

varθ(i) pθ(i) 6= 0, ps
i = 0

vars
i pθ(i) = 0, ps

i 6= 0
none pθ(i) = 0, ps

i = 0

(5c)

where the minimum varnew
i is set to 0.1ν to avoid an over-

fitting between the model and samples.
2) MDL-based model selection: We use the MDL prin-

ciple [35] to select a model subset M from the candidate
model set M in order to describe the different sub-categories.

argmin
M⊆M

L (S,M), L (S,M) = L (S |M)+L (M) (6)

L (M)=−∑
m∈M

pmlogpm, L (S |M)=−∑
m∈M

pmUm (7)

where the total description length L (S,M) consists of the
inter-model description length L (M) and the intra-model
sample variation given the models L (S |M). pm is the prob-
ability of a sample being best-matched to model m among
all models in M. Um is the average matching uncertainty
between model m and its best-matched samples. Let u(S,m)
denote the matching uncertainty between sample S and model
m. The calculation of Um is weighted by the sample reliability
R(S):

u(S,m) =− log match(S,m) (8a)

Um = ∑
Φ(S)=m

R(S)u(S,m)/ ∑
Φ(S)=m

R(S) (8b)

where, Φ(S) = argmax
m∈M

match(S,m)

We use the greedy strategy to find an approximate solution
to the minimization problem, as illustrated in Fig. 4. In each
step, we remove the model from the current model set M,
which minimizes the total description length, as follows:

argmin
m∈M

L (S ,M�{m}) (9)

Encouragement of sub-category diversity: In the early
iterations, the models are seed-like, and thus prone to collect-
ing seed-like samples. Therefore, seed-like samples make up
a larger proportion than they should in early iterations. If we



Fig. 5. Object seeds

estimate pm on the basis of the collected samples, the large
pm of seed-like models may prevent the selection of models
of other shape styles. As a result, the learning process will be
biased toward seed-like sub-categories. Hence, we set pm to
a constant c for all models to ensure sub-category diversity.
Thus, based on (6) and (7), we get L (M) = −∑m∈M clogc
and

argmin
M⊆M

L (S ,M) = argmin
M⊆M

{−λ‖M‖−∑
m∈M

Um}, (10)

where λ = logc is a constant.

IV. EXPERIMENTS

A. Intelligent vehicle and 3D point cloud

We develop an intelligent vehicle system to collect 3D
data. The vehicle is equipped with five single-row laser
scanners to profile its surroundings in different directions,
as shown in Fig. 1. A global positioning system (GPS) and
an inertial measurement unit (IMU) are mounted onto the
vehicle. A localization module is developed by fusing the
GPS/IMU navigation unit with a horizontal laser scanner.
In this module, the localization problem is formulated as a
simultaneous localization and mapping system with moving
object detection and tracking [24], thereby ensuring both the
global and local accuracy of the vehicle’s pose estimation.
A 3D representation of the environment can be obtained by
geo-referencing the local range data from four slant laser
scanners in a global coordinate system, given the vehicle’s
pose and the geometric parameters of the slanted laser
scanners.

Our intelligent vehicle collects 3D point cloud data in an
urban environment. Unlike RGB-D image data, large-scale
3D point cloud data do not contain color information. The
proposed category model mining requires that each category
contains enough objects to form a shape pattern, and thus
the environment must be quite large and contain various
objects. The size of the entire point cloud in our experiment
is 300m× 400m. We choose the wall, street, and tree as
the three target categories in our experiments. Within the
environment, a large number of cars park on the street sides.
The smooth street has a small variation in shape, whereas the
wall has a larger shape variation. The wall has a high noise
level owing to its long distance from the intelligent vehicle.
The wall also has various shapes, as it may be occluded by
tree branches. Trees have the largest shape variation, due to
their varied structures.

B. Model learning

Object samples for the wall, street, and tree are randomly
selected from the environment as seeds (as shown in Fig. 5).
We set the minimum matching values for sample collection
as ε = 0.1, and the model probability for model selection

as λ = 0.03 for the street and tree categories; we set lower
values for parameters ε = 0.001 and λ = 0.01 for the wall
category, as the wall is far from the vehicle. Occlusion and
measurement noise thus cause large structure variations of
the wall category.

C. Results and evaluation

Fig. 10 shows the trained models and collected samples.
All collected samples and the division of their sub-categories
are shown in Fig. 4. The three wall models represent three
sub-categories: a normal shape (Wall 1), noise shape (Wall
2), and incomplete shape (Wall 3). The two tree models
represent isolated trees (Tree 1) and ∆-shaped trees (Tree 2).
The street with cars to the side is represented by Street 1,
and the flat street is represented by Street 3. The model for
Street 2 appears somewhat ambiguous, being between two
other street sub-categories. Only three samples are described
as Street 2 in the sample set (see the thick red line in Fig. 4),
and there appears to be a strange shape pattern, i.e. a fence
in the middle of the street, in this environment (Fig. 10).
Therefore, we consider Street 2 as a biased model, which is
typically an incorrect model in semi-supervised learning.

We use point labeling to evaluate the learned models. We
compare the proposed method with pure seed-based point la-
beling, conventional unsupervised methods, and the widely-
used supervised method of point cloud classification, which
is based on AMNs. Each competing method is typical in 3D
point labeling in a large urban environment, although none
are as close to the task of efficient model base construction
as our method. We therefore only compare them from the
perspective of point labeling. Besides, as point cloud data
do not have color information, many RGBD-image-based
methods [2], [4], [5], [7], [8], [9] are not comparable.

To construct the ground truth, we manually label 3D points
as wall, flat street, tree and car. Points labeled car and
flat street are considered as positives in the street detection.
Both the tree seeds and tree models contain a small area
of flat streets, so the flat street points are not considered as
either positives or negatives in the tree detection. Different
segmentation thresholds (τ) are used to draw the performance
curves for point labeling.

1) Comparison with seed-based point labeling: Seed-
based point labeling directly generates the initial models
from seeds, and uses them to retrieve objects in the environ-
ment. Fig. 6 compares model- and seed-based point labeling.
The results demonstrate the accuracy of the learned models.
Point labeling uses the global structure of objects, so small
object fragments from large occlusions are not prone to being
detected, although they are labeled as different categories in
the ground truth. As a result, the curve does not continuously
increase toward a recall of 100%.

2) Comparison with conventional unsupervised meth-
ods: The first unsupervised method for comparison is un-
supervised 3D category discovery and the point labeling
proposed in [1]. Considering the requirements for the inputs
and outputs in Section II, this method is the most comparable
to our own. Along with [1], we also compare our method
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3D category shape extraction Semi-supervised
discovery [1] [20], [21], [1] Wall Street Tree

6280 3366 200 47 52

with unsupervised repetitive shape extraction. This method
was originally proposed by [20], [21], and was applied to
indoor environment. Zhang et al. extended the core idea
of this method to a large urban environment, as one of
its competing methods in the experiments of [1]. Thus, we
choose this extended version of repetitive shape extraction
for comparison. Note that repetitive shape extraction is
mainly based on the hierarchical clustering of object samples
(see [1] for details), and as is widely known, the cluster
number (or cluster size) greatly affects the cluster purity.
Fortunately, one of the final cluster-merging steps produces
two clusters in the wall, street, and tree categories, as well
as one chaotic cluster (shown in Fig. 7), which is similar to
the final number of sub-categories in our method. Thus, we
use these clusters for comparison.

Result: The results of the two unsupervised competing
methods are shown in Fig. 6. The unsupervised 3D category
discovery [1] shows relatively low error rates, while unsu-
pervised repetitive shape extraction [20], [21], [1] exhibits
relatively high detection rates.

Without shape guidance from object seeds or any mecha-
nism to limit the bias problem, unsupervised repetitive shape
extraction provides biased results, i.e. object samples that are
not correctly localized (see Fig. 7). One category consists of
wall fragments, and another category takes a combination of
two trees as a single object. Actually, the chaotic cluster is
a wall category, but is greatly biased. Its proportion of wall,
flat street, tree, and car points is 1 : 0.4 : 0.6 : 0.2.

Time cost: Table. I shows the time costs of the two
unsupervised methods and our approach. Compared to the
unsupervised methods, the biggest advantage of our semi-
supervised approach is its low computational cost, as it
only deals with some semantically meaningful structure
patterns belonging to certain target categories, rather than all
possible (probably meaningless) repetitive patterns in a large
environment. The high efficiency is important for knowledge
mining from “big point cloud data”.

3) Comparison with AMN-based classification: AMN-
s [14] demonstrated a superior performance in the multiple-
class classification of point clouds in recent years. Although
not designed for category model mining, and despite their
requirement for the manual labeling of a large amount of
training data, we compare AMNs with our system from the
perspective of point labeling. AMNs are trained to classify
the wall, flat street, tree, car, and unlabeled categories.
The unlabeled category mainly consists of small fragments
resulting from data sparsity and other objects, such as buses.
They are unclear at the object level, and thus are not used
in the previous evaluation. The evaluation follows the same
criteria above: car and flat street are considered as positives
in the street detection, and flat street points are not used in

treewall street

Fig. 7. Central samples of the clusters learned by unsupervised repetitive
shape extraction [20], [21], [1]. The object samples describe, from left to
right, the shape patterns of two wall categories, two street categories, two
tree categories, and one chaotic category. The red rectangles indicate biased
categories.
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Fig. 8. Comparison of tree models (a) after different numbers of iterations,
and (b) with different seed numbers. The curves with more than four seeds
converge, showing that a limited number of seeds are sufficient for model
learning, as seed bias is overcome through sample collection.

the tree detection.
The max-margin strategy allows the AMN to operate as a

powerful multiple-class classifier, but the algorithm does not
use the global shapes of objects efficiently. In some cases,
local features are discriminative enough for classification,
thus leading to relatively low recalls and high error rates.
Fig. 6 shows the classification results with different numbers
of training samples.

4) Other evaluations: We evaluate the models trained
after a different number of iterations, or with different seed
numbers. The tree category is selected for the tests. We do
not manually remove biased models from the results to avoid
bringing subjective judgments into the evaluation; in fact,
there are no extremely biased models in the tree results.

Performance after a different number of iterations:
Fig. 8(a) shows a performance comparison. The initial

models are directly generated from seeds. In early iterations,
the system tends to collect seed-like samples, which enlarges
the bias problem in the initial models. Thus, both the initial
models and those after three iterations are highly accurate
for seed-like objects (the recall is relatively high whereas the
error rate is low), but they have a low accuracy for non-seed-
like objects (their recalls converge at a low value). However,
our MDL-based model selection ensures model diversity
(Section. III-C.2) and enables the evolution from seed-like
to well developed models. As a result, the curves after six
iterations converge, showing a similarly good performance.

Performance with different seed numbers: Our algorithm
does not require a large number of seeds for high accuracy, as
the seeds are just the starting points of the learning process.
The models are mainly trained using automatically collected
samples. As shown in Fig. 8(b), except the 1-seed curve, the
other four curves converge, showing that a limited number
of seeds are sufficient for model learning.

V. CONCLUSION AND DISCUSSION

This paper proposed a semi-supervised approach for train-
ing object models in a large and complex 3D environment,
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Fig. 6. Comparison of competing methods, including seed-based point labeling, AMN-based point cloud classification [14], unsupervised 3D category
discovery [1] and unsupervised repetitive shape extraction [20], [21], [1]. Performance curves based on both our learned models and seeds are shown. The
biased model—Street 2—is removed and thus not used in our street detection; in addition, the black curve illustrates the performance without subtracting
the biased models. Recalls and error rates of the unsupervised 3D category discovery [1] are indicated by the blue dots. As [1] regards the “flat street”
and “the cars on the street sides” as two individual categories, we use two blue dots to show their performance for the street category. Besides, the
evaluation criterion for the tree category in [1] is different from ours, so its tree category performance is not shown. The purple and green dots indicate
the unsupervised repetitive shape extraction [20], [21], [1] and AMN-based multiple-class classification [14], respectively. In the learning of the AMNs,
We label the seeds, and then further randomly label 300, 900, and 2700 point cloud cliques as different settings of the training samples (see the text next
to the green dots).

Fig. 9. Model-based point labeling results. Different colors indicate different categories, i.e. wall (green), tree (red), and street (blue).

and described various experiments that demonstrated its
effectiveness and high efficiency.

The proposed approach is a plausible way for model
mining from “big point cloud data”, as it requires much less
human labeling than supervised methods and exhibits less
computational cost than unsupervised methods.

Color information is not used, proving that the mining
of category models can be performed using 3D-point-cloud
data alone. In our experiment, the biased street model did
not greatly reduce the point labeling accuracy of the entire
street category (Fig. 6), as it only detected a limited number
of strange shape patterns. We can consider the biased model
as an abnormal detection from the environment.
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