
Moving Object Classification using Horizontal Laser Scan Data

Huijing Zhao, Quanshi Zhang, Masaki Chiba, Ryosuke Shibasaki, Jinshi Cui, Hongbin Zha

Abstract— Motivated by two potential applications, i.e. en-
hancing driving safety and traffic data collection, a system has
been developed using a single-layer horizontal laser scanner
as the major sensor for both localization and perception of
the surroundings in a large dynamic urban environment. This
research focuses on a classification method, that given a stream
of laser measurements, classify the moving object into either
a person, a group of people, a bicycle or a car. In this
research, a number of features are defined after examining
the property of data appearance. A classification method is
proposed after examining the likelihood measures between each
pair of feature and class. Experimental results are presented,
demonstrating that the algorithm has efficiency with respect to
both driving safety and traffic data collection in highly dynamic
environment.

I. INTRODUCTION

Our goal is to use a vehicle-borne sensor to perceive a

large dynamic urban environment, such as an intersection or

a crowded road in a downtown area. We are motivated by

two potential applications. One is enhancing driving safety,

where the intelligent vehicle might be close to other moving

objects, so high accuracy is required for understanding the

state of each object. The other application involves collecting

detailed traffic data such as the motion trajectories of cars,

bicycles, and pedestrians for control and traffic analysis.

In this latter application, it is important to associate the

perceptions of local surroundings with a global coordinate

system, and the traffic data are required to achieve a certain

level of global accuracy.

In order to assist cars for driving safety, research efforts

have shown the possibility of detecting and tracking objects

in front of the car using a stereo [2,21] or monocular video

camera [10], a laser scanner [3,11,14], or through sensor fu-

sion [4,9]. A good survey to the recent contributions can also

be found in [5,15]. Monitoring the front is reasonable and

efficient when a car drives on a straight path. However, when

facing a complicated environment such as an intersection in a

downtown area, a wide view and highly-accurate perception

are both required. Vu [16] and Weiss [18] performed on-

line calculation of an occupancy map to detect objects that

entered an object-free zone. This idea can be traced to the

pioneering work by Wang [17]. Many research efforts can

also be found in the famous DARPA urban challenge[1].
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There have been further research efforts to collect traffic

data using probe vehicles. Most of these use GPS (Global

Positioning System) to find the speed and trajectory of the

probe vehicle and assume that these parameters somehow

reflect the current traffic conditions of the road. Some

probe vehicles have environmental sensors to monitor the

surroundings, such as video cameras, laser scanners, and

radar. Subsequent data processing is still a great difficulty.

Gandhi [6] developed a system platform to detect, classify

and log the surrounding vehicles using a video camera. Gao

[7] proposed a method using a laser scanner to identify

surrounding vehicles and correct GPS errors.

In our previous research [22,23], a system was developed

using a one-layer horizontally profiling laser scanner as

the major sensor for both localization and perception of

the environment, where a laser-based SLAM (Simultaneous

Localization And Mapping) in a dynamic environment was

proposed, and the problem was formulated as a SLAM with

object tracking and classification as follows.

p(xk, yk, sk,m|z0:k, g0:k, u0:k) (1)

Give a sequence of laser measurements z0:k, a sequence

of GPS observation, and a sequence of control inputs u0:k,

the problem is to estimate the current state of vehicle pose

xk, moving objects yk, seed objects sk (i.e. the objects that

have not been discriminated to be static or mobile), and map

m composed by the data of static objects. A framework of

the system can be found in Figure 1. The general idea behind

the system was that the detected objects should be classified

in a spatial-temporal domain. In this way, after an object

is detected, it was tracked until the system can classify the

object into either a static or moving object with certainty.

This paper is an extension to our previous work, where

the focus is on classifying the moving objects yk that are

extracted from the laser scan data. When given a sequence

of laser measurement of a moving object, the purpose is to

discriminate the moving object into either a person, a bicycle,

a group of people (briefly ”group”) or a car (including the

bus, the truck and so on), considering normal urban scenery.

There have been researches addressing on the classification

of moving objects in a traffic scene using a laser scanner, e.g.

[3,19]. There have also been researches that fusing a laser

scanner with a video camera for such a purpose [8,12,13,20].

Normally, laser data are used to obtain knowledge, such

as the size and the speed of the object, as the input of

a previously trained classifier. However, the estimation of

an object size from an instance measurement might be

erroneous due to the always existing occlusions either from

the other objects or the object itself. This also happens in
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Fig. 1. A framework of SLAM with moving objects’ detection and tracking

the estimation of speed. An accurate estimation of speed

always relies on an accurate estimation of the object’s center

point or specific feature points, for example, which is very

vulnerable in the case of occlusion. In addition, most existing

approaches address on the classification of car and people

using laser data, while, we have not found any one that

considers the case such as a group of people, and few on

the bicycle, which are common in a populated environment.

In this research, we first develop an object model to

describe the objects in normal urban scenery. We examine all

the features that could be extracted from a sequence of laser

measurements, then examine their discriminative properties,

i.e. the likelihood functions. Finally, we propose a classifier

based on a supervised training on a set of selected features.

This paper is organized as follows. The object model and

feature extraction are discussed in section 2. A classifier is

proposed in section 3. Experimental results and discussions

are given in section 4, followed by conclusions and future

works in section 5.

II. FEATURES FOR CLASSIFICATION

We consider normal urban scenery, where the moving

object such as person, a group of people, bicycle and car

(including bus and truck) exists. In order to classify a moving

object, the features such as object size and speed are always

used. Here we discuss a special feature in laser measurement

that is discriminative in classification.

A. Data Appearance

Figure 2 shows a typical laser scan that highlights the data

features of different kinds of objects.

1) Car: The data appearance of a car varies dramatically

as its relative position and direction to sensor changes. A

number of cars are captured in Figure 2, demonstrating some

typical data appearance of cars in a horizontal laser scan. A

car might be measured on one or two neighboring sides,

so the laser points look like one or two orthogonal edges.

We call each edge an ”axis”. In the case that only the rear

or front side of a car is measured, a motion vector that is

vertical to the extracted axis, could be detected through inter-

frame differential, making up an additional axis. According

to the maximal axes that could be extracted from an instance

measurement of the object, we characterize a car as a two-

axis object.

2) Bicycle: As for a bicycle, except the cases when it is

measured only on its rear or head, where no obvious axis

could be detected from the cloud of data, the laser points

can be fit on a line that is parallel to the objects’ motion

vector(see Figure 2). Therefore, we characterize a bicycle as

a one-axis object.

3) Person: In the case a person, its data appearance do

not change dramatically considering an average range error

(3cm ∼ 10cm) in laser scanning. The data looks like a

point cloud, no obvious axis can be extracted. Therefore,

we characterize it as a zero-axis object.

4) Group: In a populated environment, it is common to

have groups of people (i.e. people walk in a crowd, briefly

”group”). The data always have a variety of appearances and

their shape changes non-rigidly. In some cases, an edge that

is either parallel or vertical to its motion vector could be

extracted. And occasionally, two axes might also be detected.

Therefore, a group might be characterized as either a one-

axis object or a two-axis one, which brings much confusion

in classification.

However, axes number is only one data feature to char-

acterize the object. From an instance laser scan, the axes

of an object might be partially measured. Moreover in many

cases, it is hard to tell whether the axes are partially measured

or not. Besides axes number, there are other axis-associated

features that could be exploited in the classification of

different objects. In the followings, we define object models

and the features that are used in classification.

B. Object Model

In this research, the classes of moving objects are defined

in a hierarchical structure as shown in Figure 3. At the

first layer, moving objects are divided into three groups,

zero-axis, one-axis, or two-axis objects. At the second layer,

some detailed models are defined to achieve a more accurate

classification. Here, we give explicit model definitions to

person, bicycle and car as shown in Figure 4, and they can

be expanded according to the moving objects to be classified.

We do not give specific model definition to the class of group.

It belongs to the ”others” in Figure 3.

C. Feature Definition

Suppose there are totally m laser points measured on the

moving object at scan k, two orthogonal axes are extracted

from them. Among the m laser points, mv corresponds to

the vertical axis and mh corresponds to the horizontal one.

dik is the residual from laser point i to its corresponding

axis, either vertical or horizontal. Let vk denotes inter-frame

2425



Fig. 2. Some typical data appearance of different kinds of objects in a
laser scan. The road boundaries and zebra zones are hand draws in order
for a better understanding.

Fig. 3. A hierarchical structure of object classes

Fig. 4. The object models for car and bicycle

speed of the object at scan k, v̄k be an averaged value at

scan k after a smoothing procedure on vk, v̄ be the average

speed during the measurement. Let l
(h)
k denotes the length

of horizontal axis, l
(v)
k the vertical axis, l

(d)
k diameter of the

laser points. In addition, in the case of a bicycle, as has been

defined in object models, the laser points might be segmented

into three parts based on the residuals to the horizontal axis.

Normally, residuals are high in middle parts, but low on two

sides. Let D̄k represents the averaged residual of middle part,

and d̄k for the two sides. We define the following features

for classification.

Feature Definition

y1
1

n·‖v̄‖
∑n

k=1 ‖vk − v̄‖
y2

1
n·‖v̄‖

∑n
k=1 ‖v̄k − v̄‖

y3 max{l(v)
k }

y4 max{l(h)
k }

y5 max{l(d)
k }

y6 v̄k

y7
1

mv

∑mh

i=1 dik

y8
1

mh

∑mv

i=1 dik

y9
d̄k

D̄k

Features y1−5 reflect global tendencies of the moving

object along the measurement, and y6−9 are the features

estimated at each instance measurement.

D. Feature Extraction

Given a stream of laser measurements, features y1−9 are

extracted as follows.

For any instance measurement zk, a K-L transform is

conduct on the laser points. According to the number of

obvious axes that are detected, the laser points of zk are

further fitted to extract the edges on each side. Meanwhile,

a speed vector vk is estimated based on inter-frame data

matching. It is compared with the extracted edges, in order

to decide the horizontal axis L
(h)
k , the vertical axis L

(v)
k , their

length l
(h)
k , l

(v)
k , and the residuals {dik}. If any of the axis is

not detected, the corresponding values are set to be invalid.

Features y1−9 are calculated based on the valid values that

are extracted from in-frame and inter-frame estimations on

{zk}. In the case of features y1−6, valid estimations can be

obtained for all the objects. However, the estimation of y7−9

is related with the axis number of the object, so it is not valid

for all the objects. For example, y8 is valid if the object is

a two-axis object, and the vertical axis is measured.

III. CLASSIFICATION

A. Training for Likelihood Measures

For each pair of object class (cj) and feature (yi), a

likelihood measure λcj
(yi) is defined telling the probability
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Fig. 5. The likelihood functions lambdacj (yi)

of making a feature observation yi when the object class

cj is known. In this research, all the likelihood measures

are generated based on a supervised training using a set of

real experimental data. They are demonstrated in Figure 5.

The likelihood measure λcj (yi) is basically a normalized

histogram using the valid estimations yi with respect to

cj . Here we need to mention a special handling for im-

plementation. As has mentioned above, invalid estimations

happen to the features y7−9. These are also counted in our

likelihood measures. Based on the training data, we calculate

the ratio of invalid estimation yi with respect to cj , denoted

by Pinv(yi|cj). The ratios are shown below.

Feature Person Group Bicycle Car

y7 0.8891 0.4331 0.9749 0.1865

y8 0.9909 0.9595 0.4968 0.6572

y9 0.9995 1 0.9322 0.9988

In order to count the invalid estimations, a normalization

is conducted on λcj (yi) to meet the following condition.

Pinv(yi|cj) +
∫

λcj
(yi)dx = 1 (2)

Given a feature estimation yi, if it is a valid value, the

probability P (yi|cj) is calculated using a Parzen window.

Fig. 6. The test-bed vehicles and their sensor configurations

However, if yi is an invalid value, the probability P (yi|cj)
is set to Pinv(yi|cj).

B. Classification Method

Given a stream of laser measurements s = {zk1, ..., zkn}
from scan k1 to kn, and a set of features {Y1, ...Y9} extracted

s, where Yi = yi,k1, ..., yi,kn are the set of yi that are

extracted from zk1 to zkn, the objective is to classify a

moving object into a certain class cj , where cj might be

either a person, a group, a bicycle or a car. The problem is

formulated as follows.

cj = arg max
j

P (cj |Y1, ..., Y9) (3)

According to Baysian rule, it can be parsed to

cj = arg max
j

{P (cj) · Π9
i=0P (Yi|cj)} (4)

Where, P (cj) is a prior that is trained previously using ex-

perimental data. P (Yi|cj) is calculated as follows assuming

that {yi,k|k1 ≤ k ≤ kn}s are independent measurements.

Here, the reason for us to take root n is to reduce the

influence from the different stream lengths.

P (Yi|cj) = n

√
P (yi,k1, ..., yi,kn|cj) (5)

= n

√
Πn

k=0P (yi,k|cj)

IV. EXPERIMENTAL RESULTS

We present a set of experimental results on the classi-

fication of moving objects, and examine the possibility of

improving driving safety and traffic data collection in a large

populated environment.

A. Sensor and Data Configuration

Figure 6 shows the test-bed vehicles used in this study.

Sensor configurations of the test-bed vehicles are slightly

different, but their functions are similar and their data are
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Fig. 7. Experimental Course

processed using the same approaches. The following experi-

ment exploits data are collected using the test-bed #2, where

a laser scanner (LMS291 from SICK) is mounted at the front

of the vehicle, monitoring a wide angle (180 degrees, and 0.5

degree/point) of the vicinity with a scan rate about 37.5Hz.

The data is downsized to 10Hz in processing considering

the performance and computation efficiency. Also, a video

camera is mounted and calibrated with the laser scanner. In

this research, they are used to examine and visualize the

results of laser-based processing. In the future, we will fuse

both sensors to achieve higher intelligence and accuracy.

Here, we need to make it clear that the experimental results

demonstrated below are achieved in an off-line mode shortly

after the data collection. The trajectories of moving objects as

well as their data streams with respect to a global coordinate

system are first extracted using the system of our previous

development as shown in Figure 1. A detailed description to

the processing and results can be found in [23]. Given the

measurement streams of each moving object, our focus here

is to classify each moving object into a person, a group, a

bicycle or a car.

B. Experimental Course

The experimental course is shown in Figure 7, where the

test-bed vehicle started from the campus of Peking University

along the red arrows, left campus at the west vehicle’s gate,

ran on public roads along the blue arrows, and entered the

campus at the east vehicle’s gate. The course lasted for 4.5

km, and the run took 15 min following the normal traffic

flow. The course inside the campus is very crowded with

pedestrians, bicycles, and parked cars. The course outside

the campus is also very dynamic, composed of a number of

intersections and crowded roads. Among all the data sets that

we have collected, this is the most challenging one.

C. Training and Classification

There have been totally 227 trajectories of moving objects

extracted using the system of our previous development.

Among them, 58 trajectories are individual person, 27 are

TABLE I

CLASSIFICATION RESULTS

Class Samples
for
Training

Samples
for Test

Correct
Classifi-
cation

Accuracy
Ratio

Person 44 14 13 93%

Group 22 7 6 86%

Bicycle 49 16 16 100%

Car 57 20 19 95%

Total 170 57 54 95%

groups of people, 65 are bicycles and 77 are cars. The ground

truth values are counted from the calibrated video images.

Among the 227 trajectories, 170 (75%) of randomly selected

trajectories are used in training procedure, leaving the rest

57 trajectories for test. Based on the training samples, a set

of likelihood measures with respect to each pair of class and

feature are obtained. They are demonstrated in Figure 5. The

prior P (ci) of each class is assigned to the ratio of the objects

in training sample set.

Figure 8 demonstrates some of the results. Thirteen pairs

of results are presented, where the first ten pairs are correct

classification, the last three are wrong results. Each pair

contains a screen capture of the processing program on laser

scans, and a back-projection of the laser processing results

onto the corresponding video image for visualization and

evaluation.

Laser points of the moving objects are shown as red dots

in both video and laser results. They are detected and tracked

using the system developed previously. Based on the stream

of laser points, the moving objects are classified and the

results are represented using frames of different colors in

video result, using characters in laser results. Red frame

and the character ’P’ associated with an ID of the moving

object represents person, green frame and character ’G’

represent a group of people, water-blue frame and character

’B’ represent a bicycle, purple frame and character ’C’

represent a car. Accuracy of the classification is counted by

an operator looking at the back-projected result on video

image. It is summarized in Table 1.

One of the major reasons for a wrong classification is

the erroneous laser points extracted from the previous pro-

cessing. These can be reasoned from the wrong classification

results in Figure 8. Result #11 shows a person walks close to

another object, and mis-recognized as a group. The reason

for it is, when an object gets near to another, their laser

points might be merged to one cluster, which tends to

be mis-recognized as a bigger one. Result #13 shows a

bus mis-recognized as a group. The reason for it is that

the laser points on bus are divided into two in clustering

procedure, which are mis-recognized as two smaller objects.

On the other hand, Result #12 show a group of people

mis-recognized as a car. Laser scanner measures a contour

line of the object at a certain plane. Based on the limited
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Fig. 8. Classification results

Fig. 9. A map demonstrating the classification results. Laser points of the moving objects are projected onto the map with a certain color representing
their class.
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information, it is difficult to tell the difference between them

with a car of slow speed. In order to reduce such erroneous

classification, a fusion of laser scanner with other kind of

sensors, such as video camera, is important.

Figure 9 demonstrates a final map containing all the mov-

ing objects that are captured during the run. The results of

simultaneous localization and mapping have been presented

in [22,23]. Here, we present the classification results by

projecting the laser points of moving objects onto the map

with a certain color. Color definition is consistent with that

of Figure 8, where red represent for single person, green for

group, water-blue for bicycle, and pink for car. Three parts of

the map are enlarged. Sub-map ”A” is inside of the campus,

where many people, groups, and bicycles exist. Sub-map ”B”

is outside of the campus, where cars and bicycles are the

major moving objects. In Sub-map ”C”, the host vehicle run

on a public road at first, and turned to a private road later. The

difference of traffic volume on the roads is clearly presented

by the map. It is also possible to generate a map for each

class of objects using their speed, direction and so on, which

demonstrate a possibility as an advanced probe vehicle for

traffic data collection.

V. CONCLUSIONS AND FUTURE WORKS

Motivated by two potential applications, i.e. enhancing

driving safety and traffic data collection, a system have been

developed using a single-layer horizontal laser scanner as

the major sensor for both localization and perception of

the surroundings in a large dynamic urban environment.

This research focus on a classification method, that given

a stream of laser measurements, classifies the moving object

into either a person, a group of people, a bicycle or a

car. In this research, a number of features are defined after

examining the property of data appearance. The relationship

(i.e. likelihood measure) between each pair of feature and

class are examined, followed by a classification method.

Experimental results demonstrated that the algorithm has

efficiency with respect to both driving safety and traffic data

collection in highly dynamic environment.

However in future, the algorithms are necessary to be

examined using on-line systems. Also, a fusion with video

image will be addressed to improve classification accuracy..
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