Mining And-Or Graphs for Graph Matching and Object Discovery
Supplementary Materials

1. Initial graph templates G° and matching results based on the final AoGs
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The initial graph templates for the cheetah, swimming girls, and the frog in Experiment 4 were labeled in their first video
frames. The initial graph template G simply consisted of three OR nodes, each having a single terminal node. During the
mining process, more OR nodes for the AoG were automatically discovered.




2. Proof of Operation 1, attribute estimation

We define A=3"_ /(€5 — EF — A[Qs]). Thus, Obj.(b) is transformed to (Fy, F) < argmaxp , g, A.
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Unlike the matches to positive ARGs that can be converged to true latent subgraph patterns within the ARGs, the matches to
negative ARGs usually have no regulations. Therefore, theoretically, the average attributes among the matched nodes {}
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in the negative ARGs should be converged to the pattern’s attributes, i.e. ~ lim mean }“f s = Fiws. Thus, we get
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where function §(x) returns 0, if 2 = none; otherwise 1. In this case, the above derivative is independent with FLw *! Thus,
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we can make an approximation ;If; =0 to simplify the computation.
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Therefore, we can estimate attributes as follows.

Ak Ak ak
Ffﬂ— mean F,°, F'+ mean F;°" (x¢.2)

kb (#5 =1, T ks(@k)a(ak=1 Y

In (3.1), pattern attribute Fiws can determine the matching assignments {%%}, which in return counteracts the effects of Fl.ws.



3. Proof of Operation 3, object discovery

Given the current pattern G, Objs.(a-b) w.r.t. a potential new node y can be re-written as
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As the new node y should be well matched to most of the positive ARGs in AT, we ignore the small possibility of y being
matched to none to simplify the calculation. In other words, the range of matching assignments 5:5 is limited to V,j \&* (ie.
§(&f)=1). Similar to (3.2), we obtain
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3.1. formulation of £,

Based on the equation above, we can use {4} } to represent {Fiwy 1 {F;’t} and reformulate £, and &,
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As mentioned in the manuscript, considering that new node y should be well matched to most positive ARGs, we just provide

an approximate solution that ignores the possibility of matching y to none in this calculation, i.e. § (:%’;) = 1. Therefore, we
get
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Because y is a new node, y has a total of |V| edges, and we normalize the pairwise energy £((y,t) — (:%’; %)) by using
|V|, rather than |V| — 1.

We substitute these to (%.5) and obtain
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2and 31 cent. || FY'—F,;*"*||? in Equation (.6). We substitute (5¢.4)
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to these terms, and it is easy to prove these identical equations:
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We then substitute the above equations back to Equation (%.6) and obtain®
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Therefore, we obtain’
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2We use function §(+) to avoid putting undefined pairwise attribute F

3We use function § (+) to avoid putting undefined pairwise attribute ;" z,none



3.2. formulation of &S

Considering the following equation
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we can obtain
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Actually, when we match G to negative ARGs in A~, some nodes in G would be matched to none with constant penalties
Upone aNd Ppone. However, in order to develop a direct solution to (3.3) without node enumeration, we ignore the matches
to none*, i.e. §(l),6 (5:;) =1. In this way, the average penalty for matching y to negative ARGs, £, can be approximately

transformed to be a function w.rt. {ié} (this will be proved later).

Note that 1) the negative ARG G; does not contain the target subgraph pattern G, and 2) local variations of the terminal
nodes within an OR node are usually much smaller than the variations between terminal nodes of different OR nodes. In
most cases, there is usually no strong trend toward assigning a node in G, to any particular terminal wé of the OR node

y. Therefore, we can apply the following approximation: instead of assigning the matched node iél in G, with a specific

terminal 1%, we can try all the terminals to fit 5’;
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where we use the distribution of terminal assignments in positive ARGs to estimate Probability(i,) for negative ARGs.

4We tentatively set Unone and ppone to be infinite to avoid matching to none.



Then, we substitute the approximation above and (%.4) to &, and get’
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As mentioned in the manuscript, in order to develop a direct solution to mining AOGs without node enumeration, we ignore
the matches to none®, i.e. 5(%%),d (5:;) =1, and thus represent the average penalty for matching y to negative ARGs, &, as
function w.r.z. {&.} in the equation above.

3.3. Solution to max (&) =& =M

Q, {F/V}{(FY'}

Because 1) £, &, {Fi% |1 <i< Ny, ¢, €Q,}, and {ijt|1 < j < Np,t €V} are all represented as functions w.r.t.
{i:’;\l <k< Nt} and 2) &, can be approximately formulated as a function independent to {1%|1 <1< N7}, we can

SWe use function §(-) to avoid putting undefined pairwise attribute ;""" into computation.

OWe tentatively set Unone and prone to be infinite to avoid mdtchmg to none.



re-write (3%.3) as
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In the equation above, we need to determine four kinds of parameters, i.e. {25}, {Z}, {Wy“}, and €2,,. The problem of energy
minimization requires a huge amount of computation to enumerate all parameter values, which proposes great challenges to
state-of-the-art optimization techniques.

Fortunately, our algorithm of model mining is performed iteratively, and inaccurate model parameters (including attributes,
the node set, the terminal set for each node, and matching parameters) can be continuously refined in later iterations. There-
fore, in this paper, we simply propose an efficient but approximate solution to node discovery and let the inaccuracy led by
the approximations be corrected in later iterations, as follows.

We first approximate the values of {a?;}, {1&’;}, and €, via local optimizations, so that we can provide a rough estimation

of {#%}. Then, we use the values of {2} to further determine other parameters, such as €2, {Fwy} and {Fyt}

First, we focus on the term of mln Z el Z/{kl in (%.7). According to our scenario of model mining, the model pattern

should be contained and only contalned by positive ARGs. In other words, we do not take two random sets of ARGs as
the positive and negative ARGs, and mine meaningless patterns from such chaotic ARGs. We assume that the true patterns

should exist physically. Therefore, as long as the mining process is not significantly biased, the attributes in the positive
k‘ l
ARGs should be much more converged than those in the negative ARGs, i.e. var}zatwn(}' V) < vamatwn(]—' ) and
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we tentatively set node y with a single terminal (i.e. |Q,| = 1) and produce a rough estimation of {#%}. Then, given {}},
the true set of terminals of node y (£2,), as well as their assignments in matching ({1&’;}), will be determined later. Thus, the



objective function for node discovery in (3%¢.3) is transformed from (.7) to
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where J(z) returns 0, if © =none; otherwise, it returns 1.

In the equation above, the range of matching assignments j:é and f’; are the unmatched nodes in G, and g,j, respectively,
i.e. ¥, €V \x' and 2 € VI \&*. Parameters {},} are determined in a local manner, and the estimation of x can be regarded
as an energy minimization of an MRF w.r.t {:%’;}, which can be directly solved via global optimizations. In this study, we use
the TRW-S [3] to compute {2}}.



4. Proof of Operation 4, terminal determination

Given matching assignments {2} of each OR node s, this operation determines the optimal number of terminals for node
s and their matching assignments {wf} Just as (3¢.3), requirements in Objs.(a—b) for each node s can be re-written as

@ ({25}{¢:}) + argmin £F, ({L},{.})argmin &
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Different from the formulation of 5; , £F should be formulated in a more general form that does not ignore the probability
of matching node s to none, as follows’.

EF = mean {5(1@? — f’;)-l-z E((s,t) — @I;a@f»]

1 o . teV
= %7 {5(92’5) {Zw?HFf" T } [1 — 5(&%) ]umme + 3" E((s, 1) >)}
=1 =1 tev
N, Nt

:{ﬁzw;& 3 | F 2}+%Z{[1—5( )}umme+z$ ((s,t) = (& 79?f>)}

i=1 1<k<N+: k=1 teV
s(ak)=1

ik sk
LYY S e e AU
P} 1<ko<N F:

= h +, ok ,
(S =N n(@BR2mp )52
n(BE = ye(ah

where C = N+Z{{17 :|U'n0'ne+zg s,t) s Ak>)}

teV

Then, we focus on the formulation of £;.
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Considering 1) negative ARGs {G, } do not contain the target subgraph pattern G, and 2) local variations of the terminal
nodes within an OR node are usually much smaller than the variations between terminal nodes of different OR nodes, we
apply the same approximation that is used to formulate £, . In most cases, there is usually no strong regulations toward
assigning a node in G; to any particular terminal 1/32 in a pattern node s in G. Therefore, we can apply the following

7We use function §(+) to avoid putting undefined pairwise attribute F, ;7™ into computation.



approximation: instead of assigning the matched node Z/, in G, with a specific terminal 1%,, we can try all the terminals to fit
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We substitute (3%.2) to the equation above. Then, considering the following equation
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|? can be regarded
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Therefore, we can use a hierarchical clustering to solve (3.11). In the beginning, each point in {#*} is initialized as a
cluster. In each following step, we merge two nearest clusters and use the cluster center to represent the new cluster. We keep
merging the clusters, until the energy in (%.11) is minimized. Thus, we can set terminal attributes { F\"*|1 <i < N, } as the
cluster centers and assign different nodes {#*} to different terminals.
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5. Sub-objectives of Objs.(a—d)

Sub-objectives of Objs.(a—d) present an approximate solution to the overall objective of graph mining. The overall objec-
tive is defined in (9) as

P(AT]G)
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generative loss; we hope £-«&;. complexity loss

where the generative loss corresponds the discriminative capability of the model, while the complexity loss controls the
number of terminal nodes to avoid over-fitting.

Thus, we approximate this objective using Objs.(a-d). First, Obj.(a) is proposed according to the definition of £} and
E; . Obj.(a) computes the optimal matching assignments of the current AoG G, and £ and & are defined on the basis of
these matching assignments.

Obj.(a): argmin&(G \I,rgk G, argminé(G \D;x)l g,)
ghk X!, 0!
Second, Objs.(b—c) are straightforward based on the above overall objective.
Obj.(b): argminQ,Fv,FEZsev(g:r — &5 + M)
Obj.(c): argmax|V| st VseV,EF —E7 +A[Q <7
In Obj.(c), we use a threshold 7 to control the discovery and elimination of OR nodes. Based on Obj.(c), we can grow
the AoG to contain a maximum number of OR nodes. We use the threshold 7 to approximate the overall objective.

In addition, we can understand Obj.(c) from another perspective. Without loss of generality, if we reformulate the model
complexity as

Complexity(G) = |Q] + B|V| = Zsev(|ﬂs| +8)

where V is the set of OR nodes. Then, the overall objective corresponds to
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generative loss; we hope £ <. complexity loss

Theoretically, this new objective does not change the formulations of Objs.(a,b,d) and the six operations for graph mining.
Whereas, in terms of Obj.(c), it requires that

argmax|V| st.VseV,EF — &7 + ANQ| + A8 <0



If we set 7 = —Ap3, this equation is just equivalent to Obj.(c).

In fact, both the original objective in (9) and the above modified objective can explain Objs.(a—d) and the six operations
for graph mining. We would like to use the original one in (9) in our article for clarity. In this case, Obj.(c) presents an
approximate solution to (9).

Finally, we use a linear SVM to train the matching parameters W, which is an approximate solution to the minimization
of the generative loss.
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6. About Figures 6, 7, and 8

Competing methods of MA, MS, MT, LS, LT cannot modify the pattern size. Thus, they simply correspond to five dots
in Figure 7. The SR method can only delete redundant nodes from the pattern without the ability of discovering new nodes.
Therefore, its corresponding curves in Figures 6 and 7 are shorter than curves of SAP and our method.

Note that it is not fair to directly compare the matching performance of two graph patterns produced by different methods,
if the graph patterns do not have the same size. It is because 1) too small patterns may be lack of important nodes (object parts)
and have bad matching performance; 2) large patterns may contain some correct but not so distinguishing node (object parts),
which decreases the matching accuracy. For example, pedals are necessary parts in bicycles, but they are not powerful in
object matching. Thus, if the bicycle pattern contains the pedals, this pattern will have relatively bad matching performance,
although containing pedals makes this pattern more complete.

Therefore, in our experiments, we regarded the matching performance (such as the average precision and the error match-
ing rate) as a function of the pattern size*. In Figures 6, 7, and 8, we compare the matching performance between the patterns
with similar sizes.

7. About comparison between supervised/unsupervised learning for graph matching and graph
mining

In fact, the main idea of this section has been introduced in the related-work section in the article. Here, we provide more
details of the comparisons between supervised and unsupervised approaches for learning graph matching and graph-mining
methods.

Methods for learning graph matching usually train parameters or refine the template to achieve stable matching perfor-
mance. The key difference between supervised methods [2, |, 4, 8] and unsupervised methods [5, 9] for learning graph
matching is whether the method requires people to manually label the matching assignments between for training. From this
perspective, unsupervised methods [5, 9] are more related to the spirit of knowledge mining.

Given a graph template (initial graph pattern), [5] learns the matching parameters, while [9] mainly refines the error parts
in the graph pattern. Therefore, essentially, these methods are designed for improving matching performance, rather than
recover object models from object fragments by discovering new object parts. In other words, their objectives are not to
discover category models from unlabeled data. If people do not label all the possible object parts, these methods cannot
automatically recover the whole object shape. In contrast, the core task of graph mining is to automatically discover new
pattern nodes from the ARGs, so as to grow the pattern to a maximum size. The direct discovery of new nodes without node
enumeration raises the biggest challenge of graph mining.

“4For single-layer graph models used in baselines, this is the total node number. For our hierarchical AoG, this is the number of OR nodes.



8. About the general forms of graph matching

Different from graph-mining techniques for “labeled graphs”, the graph-mining problem defined in graph domain of visual
ARGs should be formulated on the basis of graph matching.

Actually, graph matching has two typical forms. One is the maximization of a compatibility function applied by [5, 1,

]. The other is the minimization of an energy function, like [10, 6, 8] and ours. The first from of graph matching aims

to maximize the average compatibility between each pair of corresponding attributes. Let us take a unary (or pairwise)
attribute fiempiate in the graph template G and its corresponding unary (or pairwise) attribute fg,.qp in the target ARG, for
example. Their matching compatibility is usually defined as exp(—|| fremptate — forapnll)> €XP(—|| fremptate — Forapn|/?), or
—|| fremprate — fgrapnl®. Then, for the second form, the matching energy is mainly defined as || fiemprate — fgrapn||® just
like (3) in this study.

Actually, these two forms of graph matching is intrinsically equivalent to each other, to some extent. All of them are
typical quadratic assignment problems, and can be solved by similar matching optimization techniques [7].

9. Computational cost

We now briefly analyze the computational cost of our method. The main computational task of graph mining is the energy
minimization involved in both graph matching in Operation I and node discovery in (10) during the mining process.

First, we focus on computational cost of graph matching. In each iteration, we match the current pattern to all Nt positive
ARGs and N~ negative ARGs. Let n;” and n;” denote the node number in the k-th positive ARG G, and the node number
in the [-th negative ARG G, respectively. We use G°, G, ...,GM to denote the AoGs that are produced after 0,1, ..., M
iterations, respectively, where M is the total iteration number of graph mining. n°, n', ..., n™ denote the number of the OR

nodes in G°, G, ..., GM. The matching between an AoG G™ and an ARG Q,:r, Le. G™ 12() g,j, can be computed as a
QAP that assigns each of the n” OR nodes (more precisely, one terminal of this OR node) to one of nz + 1 labels®. Thus,
we simply use ¢(n™ — nz + 1) to denote the computational cost of this QAP. Obviously, larger values of n™ and nz will
result in higher cost. Therefore, the computational cost of graph matching during the mining process can be formulated as
o [ eln™ = nf +1) + 0 eln™ = n + 1),

Then, let us consider the computation cost of node discovery. Its computational cost in each iteration m~+1 (in which G™ is
used as the current AoG) can be formulated as a QAP that assigns each of the Nt positive ARGs with one of maxy, {nﬁ —n™}
labels (i.e. determining the node corresponding to the new OR node y in each positive ARG). Hence, its computational cost is
¢(N* — maxy{n;s —n™}). Thus, we can summarize the overall computational cost as Z%I;Ol (Nt — max{n; —n™}).

Therefore, the overall computational cost can be summarized as Z%;Ol [e(Nt — maxi{n} —n™}) + Zi; c(n™ —
nf+1)+ Zl]il_ c(n™ —n; +1)].

In fact, many techniques can be applied to these QAPs, and each of them has its own accuracy and computational cost.
Please refer to [7] for detailed computational costs of the QAP ¢(+) based on different optimization methods.

8Note that we should consider the dummy matching choice of none.



10. Evaluation of object discovery

[11] has partitioned the twenty-five categories in the dataset into five sub-groups, named SIVALI to SIVALS5, and measured
average clustering purity within each of these groups. The division of the five groups are as follows.

Group name Category Number of images
cl: ajaxorange 60
c2: checkeredscarf 60
SIVAL1 c3: bluescrunge 60
c4:  glazedwoodpot 60
c5: juliespot 60
cl:  dirtyworkgloves 60
c2: greenteabox 60
SIVAL2 c3: goldmedal 60
c4: smileyfacedoll 60
cS: spritecan 60
cl: cardboardbox 60
c2: feltflowerrug 60
SIVAL3 c3:  stripednotebook 60
c4: wd40can 60
c5:  woodrollingpin 60
cl: apple 60
c2:  candlewithholder 60
SIVAL4 c3: fabricsoftenerbox 60
c4: rapbook 60
c¢5:  translucentbowl 60
cl: banana 60
c2: cokecan 60
SIVALS c¢3:  dataminingbook 60
c4:  dirtyrunningshoe 60
c5: largespoon 60

In Experiment 3, we mined the AoGs for the 25 categories by setting 7 = 1.1. The following table shows the detailed
purity of each category, where cl—cb correspond to the five categories in each group as shown above.

cl c2 c3 c4 ¢S | Avg.
SIVAL1 | 100. 82.0 87.3 985 77.3 | 89.0
SIvAL2 | 80.0 86.0 100. 100. 100. | 93.2
SIVAL3 | 80.0 83.6 100. 96.7 81.8 | 88.4
SIVAL4 | 943 87.7 917 89.7 758 | 87.8
SIVAL5 | 86.7 96.8 929 98.4 885 | 92.7




11. Difference between our ICCV submission and ‘‘visual graph mining” attached behind this page

The paper of “visual graph mining” is a technical report in our reference. These two studies present different graph-mining
techniques. In these papers, both the subgraph patterns and the objectives of graph mining are defined in two totally different
ways:

1) In the ICCV article, we define a hierarchical And-Or Graph to represent the subgraph pattern, while, in the paper of
“visual graph mining”, the subgraph pattern is defined as a single-layer pattern. Obviously, the And-Or Graph has stronger
expressive power than the single-layer pattern.

2) In the ICCV article, we use the energy gap between positive matches and negative matches (i.e. £ —E.) as a generative
loss to guide the mining of And-Or Graphs. This ensures that the And-Or Graph is exclusively contained by positive ARGs
and not embedded in negative ARGs. However, the paper of “visual graph mining” does not has such design.

3) The techniques of graph mining are different. For example, compared to the single-layer pattern, the matching of the
And-Or Graph should additionally consider the selection of terminal nodes. In our ICCV submission, we should discover
both OR nodes and terminal nodes, which is more challenging.



12. Matching results on RGB-D images in Experiment 1




13. Matching results on RGB images in Experiment 3




14. Matching results on videos in Experiment 4
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