
Category Modeling from just a Single Labeling: Use Depth Information to Guide
the Learning of 2D Models

Quanshi Zhang†, Xuan Song†, Xiaowei Shao†, Ryosuke Shibasaki†, Huijing Zhao‡

Center for Spatial Information Science, University of Tokyo†

Key Laboratory of Machine Perception (MoE), Peking University‡

{zqs1022, songxuan, shaoxw, shiba}@csis.u-tokyo.ac.jp zhaohj@cis.pku.edu.cn

Abstract

An object model base that covers a large number of ob-
ject categories is of great value for many computer vision
tasks. As artifacts are usually designed to have various
textures, their structure is the primary distinguishing fea-
ture between different categories. Thus, how to encode this
structural information and how to start the model learning
with a minimum of human labeling become two key chal-
lenges for the construction of the model base. We design a
graphical model that uses object edges to represent object
structures, and this paper aims to incrementally learn this
category model from one labeled object and a number of
casually captured scenes. However, the incremental model
learning may be biased due to the limited human labeling.
Therefore, we propose a new strategy that uses the depth
information in RGBD images to guide the model learning
for object detection in ordinary RGB images. In experi-
ments, the proposed method achieves superior performance
as good as the supervised methods that require the labeling
of all target objects.

1. Introduction

Category model learning is a classical area in the field of
computer vision. In this paper, we return to two basic ques-
tions. First, for many regular-shape artifacts, it is the struc-
ture, rather than the texture, that determines their function-
s and categories, so how can we obtain structural knowl-
edge for each object category? Second, if we idealize the
spirit of semi-supervised learning, can we learn a category
model from the minimum labeling (only one labeled object)
and casually captured image sample pools? Here, we use
the phrase “casually captured” to describe the loose require-
ment that training samples do not need to be hand-cropped
or carefully aligned, and thus can be easily collected by or-
dinary people in their daily life. In casually captured image
sample pools, the target objects within an image are usually
small with large texture variations and various rigid trans-

Figure 1. How can a structure-based category model be learn-
t from one labeled object and a number of casually captured
scenes2? Accurate part correspondences between target object-
s are necessary for training the structure-based model, but purely
image-based object detection and matching are hampered by tex-
ture variations and rigid transformations of objects in these scenes.
Therefore, we learn models from RGBD images, but apply them
to object detection in ordinary RGB images.

formations, even including roll rotations (Fig. 1). The mini-
mum labeling meets the efficiency requirement for the con-
struction of a category model base. These category models
are expected to be able to detect objects in complex scenes.

However, the model learning is caught in a dilemma. On
the one hand, training the structure-based model requires
the collection of small target objects in casually captured
scenes, as well as the extraction of part correspondences
between these objects. On the other hand, without train-
ing, object detection and matching based on the only labeled
object is hampered by intra-category texture variations and
various rigid transformations, which represent a great chal-
lenge for state-of-the-art algorithms. Worse still, bias and
errors in object collection in the initial learning steps will
affect subsequent steps, and be accumulated into a signifi-
cant model bias.

Fortunately, the invention of the Kinect [1] has made

2The detail definition of the “casually captured scenes” is presented in
the first paragraph of Section 1.
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Figure 2. Flowchart of the proposed method. We use the 3D structure of the labeled object to match other objects in RGBD images (purple
arrows). We then use the 3D part correspondences (green arrows) to train a model for object detection in ordinary RGB images.

instance-based object detection plausible. The Kinect RGB-
D images provide explicit spatial structures of objects that
are robust to variations in texture, 2D scale, and viewpoint.
In many cases, the 3D structure of a single object is discrim-
inative enough for category detection. Thus, we propose
a different model learning strategy in which we can train
the model from RGBD images, and then apply the model
to category detection in ordinary RGB images (Fig. 1). At
first, we use structure-based 3D matching to collect object-
s from RGBD images, simultaneously obtaining part cor-
respondences, in spite of texture variations. Thus, a local
codebook of visual words can be learned for each part of
the object. The part correspondences in the 3D space are
also used to train the 2D structural knowledge in the cate-
gory model, as shown in Fig. 2. In this way, we use more
reliable 3D matching results to guide the learning of not-so-
discriminative image-based models, in order to overcome
the bias problem in the incremental model learning.

To achieve this learning strategy, we propose a novel
graphical model that utilizes an object’s edges as a new and
concise representation of its structures. Object edges have
a stronger relationship than textures to the overall objec-
t structure, particularly where large texture variations ex-
ist. In this graphical model, we design different attributes to
guide both the collection of 3D objects from RGBD images
and the training of category models.

Both the 3D object collection and the category-model-
based object detection are achieved by graph matching.
Conventional algorithms for learning graph matching [2, 3,
4] have focused on training the weights of different graph-
ical attributes, given a template graph (the category model)
and multiple target graphs. In contrast, we train the category
model by extending the method proposed by Leordeanu et
al. [2] to estimate the general prototype of model attributes
and eliminate the specificity in the labeled object.

The contributions of this paper can be summarized as
follows. Facing challenges in the semi-supervised learning
of visual models, we propose, for the first time, to use on-
ly one labeled object to start learning the structure knowl-
edge from casually captured scenes. We apply the nov-
el strategy—using objects collected from RGBD images to
train the RGB-image-oriented model, thus avoiding possi-
ble bias problems caused by texture variations and various

rigid transformations. A new type of graphical model based
on object edges is designed as a concise representation of
object structures in RGB and RGBD images.

2. Related Work
Object detection: Texture variations, object rotation-

s, and the use of object structures make the task of object
detection a great challenge. Bag-of-words models [5] have
exhibited a good performance in image retrieval and recog-
nition without using structural information, and the HOG
and silhouette templates[6, 7] have been widely used to rep-
resent global structures on the image plane. Later, Hough-
style methods [8, 9] were developed as a sophisticated su-
pervised way of encoding the spatial relationship between
object parts. [10, 11] proposed the direct use of a 3D model
to detect objects and estimate their poses in images. In addi-
tion, [12, 13] have used object appearances observed from
multiple viewpoints to learn the 3D structure in a super-
vised manner. Recently, RGBD images made object detec-
tion much easier [14, 15, 16], and even the structure discov-
ery [17] or segmentation of indoor environments [18, 19]
produced object-level results.

However, in this research, a single labeled object only
provides its specific 2D structure and appearance observed
from one viewpoint. In this case, the graph matching has the
ability to detect objects with various scales and rotations, an
approach that has been widely used [20, 21, 22]. Neverthe-
less, 2D structures of artifacts are not robust to viewpoint
changes. Thus, we use the graphical model based on the 3D
structure to collect training samples for model learning.

Model learning: We limit our discussion to unsuper-
vised and semi-supervised methods, and analyze them with
a view to the construction of a category model base.

The requirement of learning from a single labeling
makes this research related to one-shot learning [23]. How-
ever, we focus on the extraction of the exact structural mod-
el from casually captured scenes, rather than the observing
probability of patch textures.

Unsupervised object discovery (reviewed by [24]) was
a classical achievement of object-level knowledge mining.
Most methods used bag-of-words models [5] for category
representation, and others [25, 26, 27, 28] detected repeti-
tive objects with the similar appearance in the environment.
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Figure 3. Edge segmentation and illustration of variables.
[29] manually cropped and aligned target objects in images
for training, whereas [30, 25, 31] used unsupervised seg-
mentation to generate object candidates, which relied on the
foreground-background discrimination.

In contrast to the conventional learning of all categories
from a large sample pool, Li et al. [5] and Grauman et
al. [32] proposed semi-supervised learning and active learn-
ing to collect objects using an image search engine to sift the
raw images. This was found to be a more efficient ways of
constructing a category model base.

However, most of the above methods rely on objec-
t textures being highly similar, and are thus sensitive to
the texture variations of many artifacts. Furthermore, the
minimum labeling requirement for model base construction
worsens the problem of texture variations. Hence, we focus
on structural knowledge and use the depth information in
RGBD images to avoid large errors in sample collection.

3. Graphical model of object edge segments
and graph matching

Considering the need for robustness to viewpoint varia-
tion and roll rotations, we use a graphical model to encode
the local and pairwise attributes of the object structure, thus
achieving object detection via graph matching. In contrast
to conventional studies based on POI in images, or voxels
or surfaces [33, 34] in point clouds, we consider the edges
of an object as basic elements of their structures. Edges are
detected in RGB images using [35] and then discretized in-
to line segments as the graph nodes, as shown in Fig. 3. The
concise edge-based structure representation avoids the high
computational overhead of matching.

Using edge segments in the only labeled object, we con-
struct a complete undirected graph G as the initial catego-
ry model, in which parameters will be refined via learning.
Given a target scene, we generate a target graph, denoted by
G′. The local attributes of vertex i and pairwise attributes of
edge ij in G are denoted by fi and fij , respectively. We use
a matching matrix y by yii′ ∈ {0, 1} to define the matching
assignments between G and G′. yii′ = 1 if node i in G map-
s to node i′ in G′, otherwise yii′ = 0. We set

∑
i′ yii′ = 1

for all i. Thus, the general idea of graph matching is to
estimate the best matching assignments as:

ŷ=argmax
y

C, C=
[∑

ii′

ρii′yii′+
∑
ii′jj′

ρii′jj′yii′yjj′
]

(1)

where ρii′ and ρii′jj′ are the compatibility for the unary
assignment i → i′ and the pairwise assignment ij → i′j′,
respectively. These are determined by graph attributes:

ρii′ = Φ1(fi, fi′ ;w1), ρii′jj′ = Φ2(fij , fi′j′ ;w2) (2)

where w1 and w2 are parameter weightings for attributes.
In our study, some parts of the target objects in the ca-

sually captured scenes may be occluded, so some model n-
odes should not be matched. We use one-to-none matchings
to model this case, and thus add a new matching choice—
none—that is organized as a node in G′:

ρi,none=κE(ρii′), ρi,none,jj′=ρii′j,none=κE(ρii′jj′) (3)

where κ (= 1, here) controls the matching priority of none.
Besides, many-to-one matchings should be avoided, as

they introduce errors to the learning of pairwise attributes
between those multiple nodes. Considering that the com-
patibility in (2) is positive in our study, we modify unary
compatibility as ρii′jj′ = −1 if and only if i′ = j′.

By designing different local and pairwise attributes, the
graphical model can be used for both object collection from
RGBD images and object detection in ordinary images.

Edge segmentation: Edge segmentation is achieved
via a local growth strategy. Each pair of neighboring edge
points is initialized as a line segment, and then neighboring
segments are gradually merged into longer and straighter
lines. In particular, edge segments in RGBD images are
mapped to the 3D space to represent the 3D object structure.

Local non-smoothness exists on the extracted edges due
to low image quality and texture variations. Thus, we design
a penalty metric to guide the merging process for reliable
segmentation. Suppose neighboring segments u and v are
merged into a longer segment, as illustrated in Fig. 3. The
penalty of their supplementary angle θu,v is calculated as:

Penangle
u,v = θu,v(1− Uu,v) (4)

where, Uu,v = e−τ min{l∗u,l
∗
v} measures the unreliability of

the angle measurement, as angles between shorter segments
are more sensitive to local perturbations; τ (= 0.2, here)
controls the decrease speed, and l∗u and l∗v are the projected
lengths of segments u and v on the new segment.

As the orientation measurement of long segments suffers
less from local non-smoothness than that of short ones, the
length penalty is designed to avoid transferring the orienta-
tion unreliability from the short to the long segment when
merging them:

Penlength
u,v =

l∗u
l∗u + l∗v

log
l∗u

l∗u + l∗v
+

l∗v
l∗u + l∗v

log
l∗v

l∗u + l∗v
(5)

The total penalty is calculated as follows:

Penu,v = Penangle
u,v + ηPenlength

u,v (6)
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Figure 4. Model for object collection from RGBD images.

where η (= 0.5, here) is a weighting for the two penalty
metrics. Pairs with lower penalty scores are merged earlier.
The stopping criterion is that for each merge, the height of
the triangle consisting of old and new segments should not
be more than six pixel units (Fig. 3). Finally, lines longer
than 15 pixel units are selected as reliable segments.

3.1. Model for object collection from RGBD images

The proposed graphical model, as a paradigm, is adapted
for collecting objects in RGBD scenes and simultaneous-
ly extracting the correspondences of local patches between
objects for further learning. The notation for this model is
illustrated in Fig. 4.

Spatial length: The spatial length denoted by li is
taken as a local attribute. The length penalty for assignment
i → i′ can be calculated as | log li′

li
|. Thus, the compatibility

of length attributes is calculated as:

P length
ii′ = e−| log li−log li′ |/β (7)

where β (= 2, here) controls the deformability level.
Patch features: Two local patches are collected at

the terminal points of each edge segment and normalized to
their right orientations. Their HOG features are also used
as local attributes (details follow in Section 4.1). The HOG
features extracted from two patches of node i in G are de-
noted by Ωi = {ϖA

i , ϖ
B
i }. We calculate the compatibility

of patch features via a Gaussian distribution:

P patch
ii′ = G([dist(ϖA

i ,Ωi′), dist(ϖ
B
i ,Ωi′)]

T (8a)

|µ = 0, (σpatch)2I)

dist(ϖi,Ωi′) = min
ϖi′∈Ωi′

∥ϖi −ϖi′∥2 (8b)

where G(·) denotes a Gaussian function, and (σpatch)2

(= 1, here) is the covariance. As we cannot obtain the ter-
minal correspondence from matching, we use the nearest
neighboring distance dist(·, ·) to Ωi′ of node i′ in G′.

Spatial angle: θij denotes the spatial angle between
nodes i and j in G, and it is a conventional pairwise at-
tribute. Its compatibility is assumed to follow a Gaussian
distribution:

P angle
ii′jj′ = G(θi′j′ |µ = θij , (σ

angle)2) (9)

where, (σangle)2 (= 1, here) denotes the variation in angle.
Centerline: Besides the spatial angle, the relative s-

patial translation between two nodes is also modeled as a
pairwise attribute. We propose the centerline—connecting
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Figure 5. Category model for ordinary RGB images
the centers of two node segments—to measure the transla-
tion. The centerline is represented in the local 3D coordi-
nate system of the segments, which is independent of the
global rotation of the object. Let oi and oj denote the unit
3D orientation of node segments i and j. We calculate three
orthogonal unit vectors to define this coordinate system as
Oij = [

oi+oj

∥oi+oj∥2
,

oi−oj

∥oi−oj∥2
,oi × oj].

Thus, the 3D translation Tij between nodes i and j
can be measured in the local coordinate system as dij =
OT

ijTij . Note that the orientation of node segment i may
be defined as either oi or −oi, so we instead use cij =

[min{|dij1 |, |d
ij
2 |},max{|dij1 |, |d

ij
2 |}, |d

ij
3 |]T , as the center-

line coordinates. The compatibility of centerline coordi-
nates for the matching assignment ij → i′j′ is also assumed
to follow a Gaussian distribution:

P center
ii′jj′ = G(ci′j′ |µ = cij , (σ

cen
ij )2I) (10a)

(σcen
ij )2 = (α∥cij∥2)2 + (σnoise)2 (10b)

where the variation is caused by both the structural de-
formability and noise, which are controlled by α = 1 and
σnoise = 5.

Now, we summarize the model for 3D object detection
as follows. We define the local and pairwise attributes
as fi = [li,Ωi], fij = [θij , cij ], and the parameters as
w1 = [β, σpatch], w2 = [σangle, σnoise, α]. Thus, the over-
all compatibility for unary and pairwise assignments can be
calculated as:

ρii′ = Φ1(fi, fi′ ;w1) = P length
ii′ P patch

ii′

ρii′jj′ = Φ2(fij , fi′j′ ;w2) = P angle
ii′jj′ P

center
ii′jj′

(11)

As Φ1(·) and Φ2(·) are positive bounded functions, the
compatibility maximization can be transformed to the en-
ergy minimization problem and solved by TRW-S [36].

Finally, we define the matching rate Υ as the simple e-
valuation of the matching quality: Υ = Ndetect/(Ndetect+
Nnone), where Ndetect and Nnone are the number of nodes
matched to real segments in the target images and none,
respectively. An incorrect matching will produce a large
Nnone and thus a small Υ. Therefore, only those match-
ing results with Υ ≥ 0.7 are considered to be sufficiently
reliable for further model learning.

3.2. Category model for ordinary RGB images

As depth information can no longer be used, we design
new local and pairwise attributes for object detection in or-
dinary images. The notation is illustrated in Fig. 5.
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Figure 6. Local codebook extraction. (a) The bicycle is detected by 3D matching. Patches (red) are extracted at terminals of the detected
segments (blue). Yellow sides indicate patch orientations. (b) A detailed view. (c) Patch orientation normalization. (d) Patches collected
from the same part of objects are clustered to generate a sparse local codebook of patch features.

A local codebook consisting of a set of patch features—
Ωi = {ϖk

i }, (k = 1, 2, ...)—is learned for each node i in
G as the only local attribute (details follow in Section 4.1).
Different patch features in the codebook represent different
local texture styles, thus overcoming the texture variations.

Three types of pairwise attributes are defined as follows:
1) θimg

ij denotes the angle between nodes i and j in G on the
image plane; 2) we define [λA

ij , λ
B
ij ] =

1

T img
ij

[limg
i , limg

j ] as

the relative length, where limg
i denotes the segment length

of node i, and T img
ij denotes the length of the centerline

between nodes i and j in G; 3) [θAij , θ
B
ij ] denote the relative

angles between the centerline and line segments of nodes i
and j on the image plane, respectively.

As in [2], we absorb local compatibilities into the pair-
wise compatibilities, fij = {θimg

ij , λA
ij , λB

ij , θAij , θBij , Ωi, Ωj}:
ρii′ = 0

ρii′jj′ = Φ2(fij , fi′j′ ;w) =

e
−w1|θimg

ij −θimg

i′j′ |
2−

∑
k∈{A,B}

{
w2|λk

ij−λk
i′j′ |

2

+w3|θk
ij−θk

i′j′ |
2+w4[dist

2(ϖk
i′ ,Ωi)+dist2(ϖk

j′ ,Ωj)]
} (12)

The distance between the local codebook Ωi in G and the
patch features ϖi′ in G′ is also measured by dist(ϖi′ ,Ωi)
as defined in (8b). Similar to the model for RGBD images,
the maximization problem is also solved by TRW-S [36].

4. Model learning
We use matching assignments estimated by relatively re-

liable 3D matchings to guide the training of the category
model for ordinary RGB images, in order to avoid the bias
problem. With the part correspondences from 3D matching,
we extract a local codebook for each model node that covers
all possible texture styles of a local part. We then extend the
method proposed by Leordeanu et al. [2] for both conven-
tional parameter learning for graph matching and estimation
of the general prototype of model attributes.

4.1. Local codebooks extraction

For each node in the category model, we extract a set of
patches from its matched node segments in target scenes,
as shown in Fig. 6. These patches are extracted at the two
terminals of the edge segment, and then normalized to their

right orientations, thus removing rotation effects. Patches
are collected from a square, which should be rotated to the
orientation of the edge segment (Fig. 6(c)).

HOG features [6] are extracted from the patches with
5×5 cells, each of which covers half of its neighboring cells.
For gradient histogram extraction, the gradient in each cell
is encoded into 4 orientation bins (0◦–180◦). As the patch is
locally collected and suffers only slightly from illumination
changes, all the cells can be normalized in a single block.

Patch features corresponding to each node in the model
are then clustered via k-means clustering (k = 5). Cluster
centers are taken as a sparse set of visual words for this
node, thus composing the local codebook denoted by Ωi.

4.2. Model learning

The graph matching based on the category model defined
by (1) and (12) can be rewritten as

argmax
y

C = argmax
y

yTMy (13)
where M(ii′),(jj′) = ρii′jj′ . y is transformed from a match-
ing matrix to a vector. According to [37], elements of the
principal eigenvector x of M, e.g. xii′ , can be taken as the
confidence value of the corresponding assignment i → i′.

Leordeanu et al. [2] proposed to increase the elements
corresponding to the correct assignments. At the same
time, elements for incorrect assignments will decrease,
as x is normalized. To reduce the large computation, a
approximate principal eigenvector is calculated as x =

Mn1√
(Mn1)T (Mn1)

. Thus, the partial derivatives of x are com-

puted as follows:

x
′
=

(Mn1)
′∥Mn1∥ − ((Mn1)T (Mn1)

′
)Mn1/∥Mn1∥

∥Mn1∥2
(14)

where (Mn1)
′

= M
′
(Mn−11) + M(Mn−11)

′
. We

choose n = 10, as in [2].
We extend [2] from the pure learning of matching param-

eters w to the learning of both the parameters and the model
attributes {w, f} by maximizing the following function:

F(w, f) =
N∑
i=1

x(i)(w, f)t(i) (15)

where i = 1, 2, ..., N indicates each target scene used for
training; t(i) denotes the predicted matching assignment.



{w, f} is initialized using the labeled object, and the
maximization of F(w, f) can be achieved by modifying
{w, f} in an iterative framework. Intuitively, the match-
ing assignments can be directly predicted as t(i) = ŷ3D,(i),
where ŷ3D,(i) denote the 3D matching assignments in the
RGBD image. However, many categories have symmetric
3D structures, e.g. notebook PCs, and thus have several
potential assignment states. These matching states are e-
quivalent in terms of the 3D structure, but they may show
different attributes when the object is projected on the im-
age plane. The matching assignments predicted by the cat-
egory model (denoted by ŷimg,(i)) are not always the same
as ŷ3D,(i). Therefore, we use ŷimg,(i) to compute t(i), and
errors in ŷimg,(i) are detected and eliminated by ŷ3D,(i) to
avoid the bias problem. If nodes in the target image i are
matched by both ŷimg,(i) and ŷ3D,(i), the corresponding
assignments in ŷimg,(i) are probably correct. Thus, we get:

t(i) = diag{a(i)jj′}ŷ
img,(i), a

(i)
jj′ =

∑
j

ŷ
3D,(i)
jj′ (16)

a
(i)
jj′ ∈ {0, 1} indicates whether node j′ has been matched

in the 3D matching, as many-to-one matching are avoided.
In iteration k of the EM framework, the matching assign-

ment t(i),k is estimated by (16), and then the model param-
eters and attributes are modified via gradient ascent:

wk+1
j = wk

j + ζ
N∑
i=1

(t(i),k)T
∂x(i),k(w, f)

∂wj

fk+1
j = fk

j + ζ
N∑
i=1

(t(i),k)T
∂x(i),k(w, f)

∂fj

(17)

5. Experiments
5.1. Data

Various RGBD datasets has been built in recent years.
However, according to our scenario of learning from ca-
sually captured RGBD images, target objects should not
be hand-cropped or aligned, and thus have different s-
cales, textures, and rotations. Each category must con-
tain enough samples for training. Therefore, we build a
new dataset containing approximately 900 objects in com-
plex environments. Five large categories—notebook PC,
drink box, basket, bucket, and bicycle—are used, contain-
ing 33, 36, 36, 67, and 92 scenes, respectively. Please
visit http://shiba.iis.u-tokyo.ac.jp/song/
?page id=343 to download this dataset.

5.2. Results and evaluation

Most of image-based category knowledge mining al-
gorithms are hampered by texture variations and roll ro-
tations. In this case, we compare the proposed method
with image-based semi-supervised and supervised learn-
ing of graph matching, and five competing methods are

Figure 7. Biased models. (Top left) Model parameters (w) of the
notebook PC category projected onto a 2D space. Different points
indicate w learned from a different initial labeling. Our method
learns more convergent values of w, whereas the outliers provid-
ed by Semi-supervised+TRW-S indicate the biased models. (The
others) Distribution of the detection and error rates of the learned
models. Semi-supervised+TRW-S provides more biased models.

used. Pure graph matching based on TRW-S [36] with-
out learning is denoted by Matching+TRW-S. Two meth-
ods based on [2] learn graph matching in an unsupervised
manner, using spectral techniques [37] and the TRW-S [36]
to solve graph matching, respectively. However, just like
our method, the template graph is also required in [2],
so we refer to these as semi-supervised methods: Semi-
supervised+Spectral and Semi-supervised+TRW-S. The re-
maining two methods achieve supervised learning of the
proposed category model. Supervised uses the ground truth,
instead of 3D matching assignments, to guide the model
learning, whereas Supervised+NIO uses nonlinear inverse
optimization (NIO) for model learning [4, 38].

Matching+TRW-S does not learn the matching weight-
s defined in (12), so we simply set w = 1. Super-
vised transforms semi-supervised learning into supervised
learning by redefining ajj′ in (16) as 1 or 0 depending
on whether node j′ in the scene is a true object part
according to the ground truth. This kind of supervised
learning is also formulated in [2]. Finally, in Super-
vised+NIO, the NIO [38] is used to estimate the model
parameters and attributes that minimize the compatibili-
ty gap between the true assignments and predicted assign-
ments, as argminfij ,w

∑N
k=1

{
maxy C(fij ,w,y|G′(k)) −

C(fij ,w,y
(k)
truth|G

′(k))
}

. C(·) is the matching compatibility
in (1), and G

′(k) and y
(k)
truth are the graph and the matching

ground truth of scene k.

The object detection performance is evaluated by the
cross validation. We use each RGBD image to start a single
model learning process as follows. We label edge segments
on the target object in this image, and randomly select 2/3
and 1/3 of the remaining RGBD images in this category as
a training set and a testing set, respectively. Thus, we learn
a number of models for each category, and use each of them
to test object detection.

http://shiba.iis.u-tokyo.ac.jp/song/?page_id=343
http://shiba.iis.u-tokyo.ac.jp/song/?page_id=343


Detection rate / Error rate (%) Notebook PC Drink box Basket Bucket Bicycle
Matching+TRW-S[36] 56.17 / 42.82 84.84 / 14.93 74.12 / 24.67 73.43 / 22.76 67.62 / 18.31
Semi-supervised+Spectral[2, 37] 41.89 / 58.16 78.01 / 21.99 61.69 / 39.11 74.60 / 30.17 76.28 / 23.72
Semi-supervised+TRW-S[2, 36] 43.57 / 54.43 77.95 / 20.89 62.87 / 30.83 69.47 / 22.41 61.37 / 20.40
Ours 74.24 / 25.98 98.03 / 1.97 88.04 / 13.22 87.99 / 17.77 81.56 / 18.44
Supervised[2] 73.13 / 27.08 98.61 / 1.39 87.21 / 14.15 87.69 / 18.04 80.98 / 19.02
Supervised+NIO[4, 38] 78.11 / 22.13 95.54 / 4.46 92.05 / 9.42 79.08 / 25.55 82.68 / 17.31
3D matching (in RGBD images) 93.68 / 6.49 90.57 / 9.43 90.35 / 11.00 96.12 / 10.57 93.87 / 4.58

Table 1. Detection rate and error rate of object detection. Our method learns from a minimum labeling, but achieves similar performances
to these supervised methods that require to manually label all the training samples.

We use the detection rate (DR = NT

min{Nmodel,Ntarget} )

and error rate (ER = NB

Nmodel ) to evaluate each single de-
tection of objects. NT and NB denote the number of nodes
in the model that are matched to the target object and the
background; Nmodel and N target indicate the total num-
ber of segments in the model and the target object. Note
that NT + NB ≤ Nmodel, as some model nodes may be
matched to none.

Thus, the average values of DR and ER indicate the
overall detection performance for each category. The av-
eraging is applied across all detections produced by all the
learned models in the cross validation.

Results: Fig. 8 illustrates object detection using the
learned category models, and Table 1 gives the quantita-
tive results. Table 1 also proves that the performance of
3D matching from RGBD images is superior enough to
guide the learning of category models. Conventional semi-
supervised methods suffer greatly from the bias problem, as
shown in Fig. 7. For some categories, our method exhibits
a better performance than the Supervised method. This is
because the manual labeling of the ground truth only deter-
mines a set of correct object segments for detection in tar-
get scenes for the Supervised method, whereas our method
uses 3D matching to provide more exact matching assign-
ments that fit the target model, in spite of some matching
errors. Moreover, the learning algorithm [2] is not sensitive
to outliers in training samples for the regression of the pro-
totype model, so our method performs even better than the
3D matching for the drink box category.

6. Discussion and conclusions

In this paper, we proposed a method for category model
learning from a single labeled object and a number of ca-
sually captured RGBD images, and the learned model was
expected to be applied to object detection in ordinary RGB
images. The minimum labeling greatly saves human labor
in model base construction. The depth information in RGB-
D images helps the semi-supervised learning framework to
overcome the bias problem. Our experiments have demon-
strated the effectiveness of the proposed.

Using graph matching, the model cannot detect multiple

objects for each time. As artifacts for daily use usually have
regular shapes and various textures, the proposed category
model mainly focuses on structural information, namely ob-
ject edge segments. This design makes the model robust to
texture variations, but at the same time unsuitable for large-
ly occluded objects and those with highly deformable or ir-
regular shapes, such as natural scenes and animals.
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