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Abstract

The frequency and intensity of natural disasters has sig-
nificantly increased over the past decades and this trend
is predicted to continue. Facing these possible and un-
expected disasters, understanding and simulating of hu-
man emergency mobility following disasters will be-
come the critical issue for planning effective human-
itarian relief, disaster management, and long-term so-
cietal reconstruction. However, due to the uniqueness
of various disasters and the unavailability of reliable
and large scale human mobility data, such kind of re-
search is very difficult to be performed. Hence, in this
paper, we collect big and heterogeneous data (e.g. 1.6
million users’ GPS records in three years, 17520 times
of Japan earthquake data in four years, news reporting
data, transportation network data and etc.) to capture
and analyze human emergency mobility following dif-
ferent disasters. By mining these big data, we aim to
understand what basic laws govern human mobility fol-
lowing disasters, and develop a general model of hu-
man emergency mobility for generating and simulating
large amount of human emergency movements. The ex-
perimental results and validations demonstrate the effi-
ciency of our simulation model, and suggest that human
mobility following disasters may be significantly more
predictable and can be easier simulated than previously
thought.

Introduction
Japan is one of the countries most affected by natural dis-
asters. Two out of the five most expensive natural disasters
in recent history have occurred in Japan, costing huge eco-
nomic loss and large number of people death in the years
2011 and 1995 only. Meanwhile, according to Japan Meteo-
rological Agency, there were over 10681 earthquakes above
intensity one entire Japan in 2011 year only. These severe
natural disasters usually cause large population movements
and evacuations. Hence, understanding and simulating these
movements following disasters are critical for planning ef-
fective humanitarian relief, disaster management, and long-
term societal reconstruction. However, such kind of research
is very difficult to be performed due to the fact that there
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Figure 1: Can we simulate human emergency mobility for
any disaster, any place and any people? By mining big
and heterogeneous data, we aim to discover general knowl-
edge and understand what basic laws govern human mobility
following disasters. Can we develop a general model of hu-
man emergency mobility for generating or simulating large
amount of human emergency movements following different
disasters?

is no reliable approach for accurately sensing human mobil-
ity. Recently, however, people’s mobile phone data, GPS tra-
jectories data, location-based online social networking data,
and IC card data have emerged and increased explosively.
The explosive increasing of these human mobile sensing
data becomes the “Big Data”, and offers a new way to cir-
cumvent methodological problems of earlier research for hu-
man behavior modeling because they offer high temporal
and spatial resolution, are instantaneously available, have
no interview bias, and provide longitudinal data for very
large populations. Recenly, Song et al. (Song et al. 2014a;
2014b) collected data from 1.6 million GPS users in Japan
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Figure 2: Knowledge transfer and model development. We model human activities and mobility following disasters as the
random transition through its home, working location, social relationship as well as some unknown places (e.g. shelters or
hotels), and the transition process will be impacted and influenced by various disaster factors. We develop a HMM based
model, and utilize the big and heterogeneous data to train its parameters.

to mine and modeling human mobility during the 2011 Great
East Japan Earthquake and Fukushima nuclear accident, and
developed a model for predicting human behavior and mo-
bility. However, due to the uniqueness of this disaster, their
model is difficult to be applied to some different disasters
(e.g. small scale one) and the places not affected by this dis-
aster. Furthermore, their model can only be applied to the
specific person that has the historical GPS records in the
database. Meanwhile, due to the privacy concern, such kind
of data is usually very sensitive and difficult to be published
or released for further research purpose. Therefore, in this
research, we aim to: (1) discover knowledge from big disas-
ter data and understand what basic laws govern human mo-
bility following disasters. (2) develop a general model of hu-
man emergency mobility for generating or simulating large
amount of human emergency movements following different
disasters.

In this paper, we collect big and heterogeneous data to
capture and analyze human emergency mobility following
different disasters in Japan (as shown in Figure 1). By min-
ing these big data, we find that: even though human move-
ment and mobility patterns following disasters have a high
degree of freedom and variation, the majority of human
mobility is based on random movement between a small
set of important places. Hence, we model human activi-
ties and mobility following disasters as the random transi-
tion through its home, working location, social relationship
as well as some unknown places (e.g. shelters or hotels).
But the transition process will be impacted and influenced
by various factors, such as intensity of earthquake, damage
level, news reporting, current time, travel distance, travel
time and etc. We develop a general model of human emer-
gency behavior, and use the collected big human mobility
data and disaster information data to learn how these factors
will influence people’s decisions. Finally, given a series of
important places of people, disaster information and trans-
portation network of the city or country, our training model
can randomly simulate or generate human mobility follow-
ing this disaster. Our work will have the following key char-
acteristics that make it unique in the world:

• Big and heterogeneous data: 1.6 million users’ GPS
records in three years, 17520 times of Japan earthquake
data in four years, news reporting data, transportation net-
work data and etc.

• A general model of human emergency mobility: our
model can randomly simulate or generate human mobility
following disasters, it can be applied to any people, any
place and any disaster.

The remainder of this paper is structured as follows: Sec-
tion 2 introduces our big and heterogeneous data source.
Section 3 describes the knowledge transfer from data and
model development. Section 4 provides the details on human
emergency mobility simulation and generation. Experimen-
tal results are presented in Section 5. Related work is briefly
reviewed in Section 6, and the paper is finally summarized
in Section 7.

Heterogeneous Data Source
In this research, we utilize big and heterogeneous data
source to understand human mobility following disasters,
and they can be summarized as follows:

• Human mobility data: we collected GPS records of ap-
proximately 1.6 million anonymized users throughout
Japan from 1 August 2010 to 31 July 2013. To manage
these data, we utilized five computer to build up a Hadoop
cluster, which contained 32 cores, 32GB memory, 16TB
storages, and was able to run 28 tasks at the same time. It
can provide indexing, retrieval, editing and visualization
services.

• Disaster information data (earthquake and tsunami): we
collected 17520 times of earthquake data throughout
Japan from 1 January 2010 to 31 December 2013. These
data contains occurrence time, earthquake hypocentral lo-
cation, earthquake magnitude, earthquake intensity for
impacted places, damage level (1-7) (e.g. destroyed build-
ings and people death by the earthquake or tsunami) and
etc.

731



 (a) Distribution of geographic location on woking 

days

(b) Distribution of geographic location on important 

holidays

Working Places

Working Places

Home

Social 

Relationship:

Hometown

Figure 3: Distribution of geographic location for one of
the authors. This figure shows the distribution of geo-
graphic location for specific person (one of the authors of
this paper) during normal times. The color denotes the prob-
ability of staying location of this person at a specific time
period; warmer ones indicate higher probability. Figure (a)
shows this distribution on working days, and Figure (b)
shows the cases on some important holidays (e.g. national
holiday, New Year Festival, Christmas day).

• Disaster reporting data: we collected government decla-
rations as well as news reports from mainstream medias
in Japan and all over the world for large-scale disasters
(e.g 2011 Great East Japan Earthquake). Based on these
information, we empirically divided these reporting and
declarations into four levels to measure the disasters, e.g.
one level means not serious from the reporting, and four
level means extremely serious.

• Transportation network data: we collected the road net-
work data and metro network data of main cities in Japan.
These data contains road structure and POI information.

Knowledge Transfer and Model Development
By performing some empirical analysis on human mobility
data following disasters, we find that: even though human
movement and mobility patterns following disasters have a
high degree of freedom and variation, the majority of human
mobility is based on random movement between a small set
of important places, such as home location, working loca-
tion, social relationship (friends’ house, hometown and etc.)
and some unknown places (e.g. shelters, hotels and etc.).
Meanwhile, these mobility patterns will also be impacted
and influenced by various kinds of factors (as shown in Fig-
ure 2). For instance, if a small earthquake with low intensity
occur at midnight, people may stay at home and go back to
sleep. In contrast, if a big earthquake occur at midnight and
cause some building destructions, people may screw out of
the house and find some safe places to stay, but they need to
consider the travel distance or travel time. But if a very huge
earthquake (such as 2011 Great East Japan Earthquake) oc-
cur and become the composite disaster accompanied with
many negative news reporting, people may leave their living
city and find a safe place (e.g. hometown) far from the dis-
aster. Hence, in this section, we aim to understand how these
factors will influence and govern human mobility following
disaster, and extract general knowledge of human disaster
behaviors by mining big and heterogeneous data.

Important Places Discovery
To model and understand human behavior and mobility fol-
lowing disaster, we need to discover and recognize impor-
tant places in peoples daily life, e.g. home, working places,
and places of important social relationships (e.g. hometown,
parents, relatives and good friends). In this research, we uti-
lized the mobility data to compute distribution of geographic
location (X. Song and Shibasaki 2013b) for individual peo-
ple (as shown in Figure 3). Based on the analysis of this
distribution with time, it is easy for us to find and recognize
some important places of individual people. For example,
the highest frequency staying place by daylight on working
day is usually peoples working place, and the one in night
is usually peoples home (as shown in Figure 3-a). Mean-
while, some high frequency visited places on the weekend
and some important holiday (e.g. national holiday, New Year
Festival, Christmas day) are recognized as the peoples im-
portant social relationships (as shown in Figure 3-b).

Model Development and Learning
Preliminaries: Consider a set of individual people’s
activities Activity = {act1, act2, ..., actn} after the
disasters, and each activity acti = l1 → l2 → ... → lm
denotes a series of m location transfer with the disaster
information. Each location l is a tuple in the form of l =<
uid, time, label, latitude, longtitude, distance, intensity,
damage, reporting >, where uid is the id of people, time
is the current time, label specify the people’s important
places, such as home location, working location, places of
important social relationships and unknown places. Here,
latitude and longtitude specify the geographic position of
this location, distance is the distance from the earthquakes,
intensity is the seismic or intensity scale of the earthquake
at this location, damage is the damage level of this location,
and reporting is the government declarations and news
reporting level. Therefore, our goal is to learn a general
model from Activity. Given a series of people’s important
places and disaster information, we want to randomly
simulate or generate people’s location transition sequences
with the probability.

HMM based Model: In this study, given a set of disaster
information Z = {z1, z2, ...zN}, such as intensity of earth-
quake, damage level, news reporting, current time, travel
distance, travel time, we model human activities and mo-
bility following disasters as the random transition through a
series of state S = {s1, s2, ..., sM}, such as home location,
working location, social relationship, some unknown places.
In this study, we use hidden Markov model (HMM) (J. Ye
and Cheng 2013; Zucchini and MacDonald 2009) to model
dependency between these states, and the overall behavior
model with its graphical representation is shown in Figure
2.

In our study, the following three key parameter compo-
nents of HMM model need to be learned: (1) initial state
probability φsi for each hidden states si ∈ S; (2) state tran-
sition probability ψsi,sj from the hidden states si to sj ; and
(3) state-dependent output probability P (zj |si), which de-
termines the probability of the people’s mobility zj ∈ Z
given the hidden behavior state si ∈ S.
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Figure 4: Emergency mobility simulation. Based on our training HMM model, we randomly simulate the location transition
sequences. Then we utilize the transportation network or pre-trained urban mobility model to plan the traveling routes, and
finally generate the human emergency movements following disasters.

Model Learning: To learn the overall behavior model,
we need to estimate the key parameters of HMM as the
discussion above, and a suitable solution is to use EM ap-
proach which aims at maximizing the likelihood of the loca-
tion transfer sequences. In our study, the overall likelihood
should be summed over all possible location transfer through
the underlying hidden states, and is able to be computed by:

P (Z1:T ) =

SM∑
S1=s1

...

SM∑
ST=s1

φS1

T∏
t=2

ψst−1,st

T∏
t=1

P (Zt|St).

(1)
Here, we assume the HMM is time-homogeneous, and state
transition probabilities and state-dependent output probabil-
ities do not change with time t.

According to (Zucchini and MacDonald 2009), we refor-
mulate Equation (1) as:

P (Z1:T ) = ΦPZ1
ΨPZ2

...ΨPZT
1>, (2)

which is expressed by matrix multiplications to reduce the
computational cost. Here, Φ is a 1 ×M initial state distri-
bution vector, Ψ is a M ×M hidden state transition matrix
where Ψij = ψsi,sj , and PZT

is a M × M diagonal ma-
trix with P (Zt|si) on the diagonal and other entries as 0.
Then we can use Baum-Welch algorithm (Baum et al. 1970)
to estimate the hidden state transition probabilities and the
state-dependent output probabilities.

To decide the right number of hidden states M in learn-
ing the HMM, we use Bayesian Information Criterion (BIC)
(Schwarz and others 1978) to evaluate the HMM with differ-
ent state numbers, and a smaller BIC value always leads to
better model fitness.

Emergency Mobility Simulation
Given a series of important places of people and the disas-
ter information, we aim to randomly simulate and generate
its emergency mobility following this disaster (as shown in
Figure 4). There are mainly two stages for the simulation
process: (1) based on the training HMM behavior model,
we randomly generate location transition through its impor-
tant places; (2) given the location transition sequences, we
use the transportation network or pre-trained urban mobility
graph (Song et al. 2014a) to plan the traveling routes. Hence,
in this section, we will present details on how to simulate hu-
man emergency mobility following different disasters.

Location Transition Simulation
To randomly generate person’s location transition sequence
following disasters, we utilize particle filter (Doucet, God-
sill, and Andrieu 2000) approach to simulate this process.
The basic idea behind a particle filter is very simple. Start-
ing with a weighted set of samples {w(k)

t , s
(k)
t }Kk=1 approx-

imately distributed according to p(st−1|zt−1), new samples
are generated from a suitably designed proposal distribution
q(st|st−1, zt). To maintain a consistent sample, the new im-
portance weights are set to

w
(k)
t ∝ w(k)

t−1

p(zt|s(k)t )ψ
s
(k)
t ,s

(k)
t−1

q(s
(k)
t |s

(k)
t−1, zt)

,

K∑
k=1

w
(k)
t = 1. (3)

Hence, the overall simulation process is present as follows:
1. Initialization:
Generate K weighted set of samples {w(k)

t , s
(k)
t }Kk=1 from

the learnt initial state probability φsi of our trained HMM.
2. Resampling:
Resample K particles from the particle set St using weights
of respective particles.
3. Location Transition Simulation:
Simulate the state transition of the particle set St with the
learnt transition probability ψsi,sj of our trained HMM.
4. Weighting:
Recalculate the weight of St by using Equation (3). Here,
we utilize the learnt observation model P (Z1:t|St) of our
trained HMM as the proposal distribution in Equation (3).
5. Behavior Selection :
Select person’s transition behavior by finding the highest
weight one in the particle set St.
6. Iteration:
Iterate Steps 2, 3, 4, and 5 until convergence.

Mobility Simulation
Given the location transition sequences of people follow-
ing disasters, there are two ways to simulate its traveling
routes. For the small earthquakes, we can directly use the
transportation network (e.g. road network data and metro
network) of cities to plan people’s traveling routes. But for
the large-scale earthquakes, the public transportation sys-
tems are usually unavailable. Hence, we use the pre-trained
urban mobility graph (Song et al. 2014a) to plan the travel-
ing routes (as shown in Figure 4).
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 (a) Urban mobility graph for Kyoto  (b) Simulation results of single person  (c) Simulation results of large number of persons  

Figure 5: Visualization of simulation results. This figure shows the example of our simulation results for Kyoto. Here, we
use the pre-trained urban mobility model to plan the routes. Fig.a shows the urban mobility graph of Kyoto. Fig.b shows the
example of simulation results for the single person. Fig.c shows the example of simulation results for large number of persons
in Kyoto.

To effectively plan people’s traveling routes by consider-
ing various disaster factors, we train a decision model by us-
ing Markov Decision Process (MDPs) (Puterman 1994). In
our problem, the transportation network or urban mobility
graph provide us a deterministic MDP, the nodes are able
to be seem as state, the edge is the action, and the path
is the people’s movements following the earthquake. These
movements are parameterized by their path feature fζ . For
instance, a person’s movements can be described by: travel
through node A (dens = 0.37, type = residential) to
node B (dens = 0.58, type = commercial), and finally
stayed in node C (dens = 0.75, type = administrative)
with route 1 (frq = 0.37, time = 0.58) (A → B) and
route 2 (frq = 0.29, time = 0.62)(B → C), where
dens is the region population density, type the region types
(e.g. residential, commercial and etc.), frq the travel fre-
quency of the route, time is the travel time of the route.
Hence, we need to utilize all the population trajectories to
train a MDPs model that is able to optimally demonstrate
these people’s movements after the earthquake. Obviously,
this is an Inverse Reinforcement Learning problem. In this
study, we utilize the Maximum Entropy Inverse Reinforce-
ment Learning algorithm (B. D. Ziebart and Dey 2008b;
2008a) to train the overall decision model.

Finally, given person’s location transition sequence, its
mobility can be easily simulated by performing the Markov
model route planning. In our study, we assume that people
usually will find a safe and fast route (e.g. high frequency
visited route and low travel time) for evacuation following
the disasters. Hence, we employ the route planning using
the destination-conditioned Markov Model (Simmons et al.
2006). This model recommends the most probable route sat-
isfying origin and destination constraints.

Experimental Results
Based on the disaster information data (space and time), we
selected human movements (GPS trajectory) in 24 hours fol-
lowing each earthquake from our human mobility database,
and the selected geotropical regions were the places where
the earthquake intensity was above one. These GPS trajecto-
ries, the related disaster information and the disaster report-

ing information formed the training and testing dataset. We
randomly selected 80% of the data for the model training,
and used the remaining 20% data for testing and evaluation.
We then converted the GPS trajectories in the training set to
the sequence of important places transition as the discussion
in Section 3 to prepare the training samples. In the training
process, we found that the majority of training data were
from some very small-scale earthquake (e.g. earthquake in-
tensity is below 3). To balance the training samples of large
and small scale disasters, we randomly selected 20% data
from small-scale disasters set, and use them with large-scale
disaster data to form the new training sample dataset. In this
section, we present experimental results and evaluation of
model for human emergency mobility simulation.

Simulation Results
To simulate human emergency mobility following disasters,
users need firstly to select the important places in the map,
and then input the disaster information (e.g. occurrence time,
earthquake hypocentral location, earthquake intensity at this
region, damage level and etc.), and our simulator can au-
tomatically simulate possible movements of this person. To
show the performance, here we used the real information in
the testing dataset as the input. Figure 5 shows the sample
results of our simulator. From Fig.5-b, we can see that our
simulation results are very similar the real movements of this
person following a specific disaster.

Performance Evaluation
Evaluation metrics: To evaluate the accuracy of the simu-
lated mobility of people, we used three different metrics dis-
cussed in (B. D. Ziebart and Dey 2008a). The first compared
the model’s most likely simulated trajectory (trajectory with
the highest probability) with the actual demonstrated trajec-
tory in the testing set and evaluated the amount of route
distance shared. The second shows what percentage of the
testing trajectories match at least 90% (distance) with the
model’s simulated one. The final metric measures the aver-
age log probability of mobility in the training set under the
given model.
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Table 1: Performance Evaluation

Algorithm Matching 90% Matching Log-Prob

Our Model 65.26% 45.33% -7.13
MF 58.23% 39.62% -7.97
GM 51.22% 33.16% -8.21

PMM 63.18% 42.69% -7.33

Baseline models: We considered three non-trivial base-
line models for comparison. (1) Most Frequented Location
Model (MF): For every hour of the day, this model simulates
the most likely (most frequent visited) place of a particu-
lar people. Despite its simplicity, this model is very strong
baseline. Lu et al. (X. Lu and Holme 2012) also used this
model to predict population mobility after the 2010 Haitian
earthquake. (2) Gaussian Model (GM): This model has been
proposed by Gonzales et al. (MC. Gonzalez and Barabasi
2008), and it models human movements as a stochastic pro-
cess centered around a single point. This model is static in
time and captures the scale of a person’s movements more
than anything else. (3) Periodic Mobility Model (PMM):
This model is built on the intuition that the majority of hu-
man movement is based on periodic movement between a
small set of locations. As the state-of-the-art methods, it has
been proposed by Cho et al. (E. Cho and Leskovec 2011),
which is able to predict the locations and dynamics of fu-
ture human movements. For training these baseline models,
we retrieved the GPS data in three months from our mobil-
ity database by using person ID in the testing set, and use
them to train the final model. Then, we used these baseline
models to predict human next visited places following the
disasters, and then used the transportation network to plan
the final traveling routes of people.

Performance evaluation: We compared the performance
of our model with the performance of the baselines, and
table 1 shows their performance. The baseline models are
trained by particular people’s historical movements, and can
only be applied to specific person. In contrast, our model
is a general mobility model, and can be applied to any per-
son. From this table, we can see that the performance of our
model is very similar to PMM model, and has a much bet-
ter performance than the other two models. Obviously, our
simulator is more powerful for simulating human emergency
mobility than these competing methods that are used for pre-
dicting or simulating human mobility during normal times.

Related Work
Recently, a number of studies on human mobility pat-
terns during disasters have been proposed (M. Moussaid
and Helbing 2009; Hahm and Lee 2009), mainly focus-
ing on small-scale and short-term emergencies (e.g. crowd
panics and fires). However, research on the dynamics of
population movements on a national scale during large-
scale disasters (e.g. earthquakes, tsunamis, and hurricanes)
is very limited (X. Lu and Holme 2012), likely the result
of difficulties in collecting representative longitudinal data
in places where infrastructure and social order have col-

lapsed (JP. Bagrow and Barabasi 2011; L. Bengtsson 2011)
and where study populations are moving across vast ge-
ographical areas (X. Lu and Holme 2012). Recently, the
big auto-mobile sensor data (e.g. mobile phone data, GPS
data, location-based social network data and etc.) offer
a new way to analyze and model population movements
for very large populations (CM. Song and Barabasi 2010;
MC. Gonzalez and Barabasi 2008; X. Lu and Holme 2012;
JP. Bagrow and Barabasi 2011; C. Song and Barabasi 2010;
N. Eagle and Lazer 2009). Meanwhile, human mobility or
trajectory data mining (Backstrom, Sun, and Marlow 2010;
Giannotti et al. 2007; E. Cho and Leskovec 2011; J. Ye
and Cheng 2013; Z. Li and Nye 2010; Scellato, Noulas,
and Mascolo 2011; X. Song and Shibasaki 2013a; 2013b;
Yuan et al. 2013) have become a very hot topic in various
research fields.

More Recently, Song et al. (Song et al. 2014a; 2014b)
collected the data from 1.6 million GPS users in Japan to
mine and model population evacuations or mobility during
the 2011 Great East Japan Earthquake and Fukushima nu-
clear accident, and demonstrated that the prediction of large
population movements or individual person after large-scale
disaster was possible. However, due to the uniqueness of this
disaster, their model is difficult to be applied to the places
outside of Japan or places not affected by this disaster. Fur-
thermore, their model can only be applied to the specific per-
son that has the historical GPS records in the database. Thus,
in this research, we firstly propose a general model of human
emergency mobility that can be applied to any people, any
place and any disaster.

Conclusion

In this paper, we collect big and heterogeneous data to cap-
ture and analyze human emergency mobility following dif-
ferent disasters in Japan, and develop a general model of hu-
man emergency mobility for generating or simulating large
amount of human emergency movements following disas-
ters. The experimental results and validations demonstrate
the efficiency of our simulation model, and suggest that hu-
man mobility following disasters may be easier simulated
than previously thought.

We note the limitations within our study. Because our
training data was very huge, we found that with the increas-
ing amount of training data, the performance of our model
will face some bottlenecks. In the future, we will try to build
up Deep Belief Net and utilize the deep learning technology
to model large amount of human emergency movements.
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