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Abstract

Tracking hundreds of persons in the large and high density scenarios is a partic-
ularly challenging task due to the frequent occlusions and merged measurements.
In such circumstances, a stronger dynamic model for prediction usually plays a
more important role in the overall tracking process. In this paper, we propose an e-
laborate dynamic model for multiple pedestrians tracking in the extremely crowd-
ed environments. The novelty of this tracking model is that: the global semantic
scene structure, local instantaneous crowd flow and the social interactions among
persons are taken into account together and combined into an unified approach,
which can make the prediction for persons’ motion more powerful and accurate.
We apply the proposed model by using an online “tracking-learning” framework,
which can not only perform the robust tracking in the extremely crowded scenar-
ios, but also ensures that the entire process is fully automatic and online. The
testing is conducted on the JR subway station of Tokyo, and the experimental re-
sults show that the system with our tracking model can robustly track more than
180 targets at the same time while the occlusions and merge/split frequently occur.

Keywords: Multi-target Tracking, Motion Model, Laser-based Surveillance

1. Introduction

Multiple targets tracking plays a crucial role in various applications, such as
surveillance, sports video analysis, human motion analysis and many others. Typ-
ically, a multi-target tracking algorithm can be improved with the two following
ways: (1) a stronger dynamic model for prediction. (2) a stronger observation
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Figure 1: How to maintain the robust tracking in the large and high density scenarios? This is
the JR subway station of Tokyo, and the data was obtained by eight single-row laser scanners.
The green points are the background, the blue ones are the foreground, and the red ones show the
position of single-row laser scanner. In this case, each person is represented by several points.
For more details about the experimental site, please refer [1]. We can see that the occlusions and
merged measurements frequently take place in such circumstances, and maintaining the robust
tracking becomes quite a challenging task.

model (e.g. reliable measurements or detections, better data association algo-
rithms) for updating. However, for tracking hundreds of persons in the extremely
crowded environments (such as subway station, public square and etc.), it is usu-
ally difficult to obtain reliable measurements due to the frequent occlusions and
merged measurements, and making the correct data association becomes signifi-
cantly challenging (as shown in Fig. 1). Hence, a good dynamic model usually
plays a more important role in the overall tracking process in such circumstances.
Therefore, the purpose of this paper is to develop a strong dynamic model that can
help the tracking algorithm to robustly track hundreds of persons in the large and
high density scenarios.

While the pedestrians are walking in a specific scenarios, their tracking results
can be significantly improved with the semantic scene knowledge (e.g., dominan-
t paths, entry or exit, crowd flow and etc.). For instance, “persons usually walk
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from entrance to exit”, “persons have to walk in the dominant paths and avoid stat-
ic obstacles”, “persons who are in a crowd flow can only follow the other people
in it.” A statistical scene model can provide a priori knowledge on where, when
and what types of activities occur. Therefore, in this paper, we intensively inves-
tigate the relationship between pedestrians’ social behaviors and their walking
scenarios, and propose a novel dynamic model for tracking hundreds of persons

in the extremely crowded environments. Our model considers various factors that
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(c) Obtained next desired velocity
for target 201

(a) Target 201 in frame 263

(b) Three factors that can influence human motion

Figure 2: Overview of the tracking model. While the pedestrian 201 is walking in the large and
high density scene (Fig. a), three factors will influence its short-term path planning (Fig. b): (1)
Global scene structure: person should consider the scene structure, move from entrance to exit,
walk on the dominant paths, avoid obstacles and find the shortest path. (2) Local crowd flow:
persons who are in a specific crowd flow have to follow other persons in it. (3) Centrifugal force:
persons usually want to keep a comfortable distance from others. Based on the three factors, our
model compute the next desired velocity of person 201 in frame 263 (Fig. c).

will influence human motion in short-term (as shown in Fig. 2), such as global
semantic scene structure (paths, exit/entrance), local instantaneous crowd flow,
centrifugal force among pedestrians. In addition, we apply this model by using an
online “tracking-learning” framework, which can not only dynamically reflect the
change of scene structure, but also make the overall system fully automatic and
online.

The remainder of this paper is structured as follows: In the following section,
related work is briefly reviewed. Section 3 and 4 provide the details about the pro-
posed tracking model and the application of this model. Experiments and results
are presented in Section 5 and the paper is finally summarized in Section 6.

2. Related Work

Multiple target tracking (MTT) has been studied extensively and an in-depth
review of tracking literature can be found in a recent survey by Yilmaz et al. [2].
Typically, the tracking algorithm can be improved by a stronger observation mod-
el. In this aspect, data association [3] becomes an very important issue. The near-
est neighbor standard filter (NNSF) [3] associates each target with the closest mea-
surement in the target state space. However, this simple procedure prunes away



many feasible hypotheses and cannot solve “labeling” problems when the target-
s are in close proximity. In this respect, a widely used approach to multi-target
tracking is achieved by exploiting a joint state space representation which con-
catenates all of the targets’ states together or inferring this joint data association
problem by characterization of all possible associations between the targets and
observations, such as Joint Probabilistic Data Association Filter (JPDAF) [3, 4],
Monte Carlo technique based JPDA algorithms (MC-JPDAF) [5, 6] and Markov
chain Monte Carlo data association (MCMC-DA) [7, 8]. Moreover, researchers al-
so propose some global optimization strategies [9, 10, 11] to reduce the complex-
ity and optimize data association algorithms. On the other hand, some researchers
also try to explore the stronger appearance model or detection to improve the
observation model, and representative publications include [12, 13, 14, 15, 16].
However, most of these methods mentioned above are difficult to be applied to
track hundreds of targets in the extremely crowded scene.

Recently, researchers are aware that a stronger dynamic model can significant-
ly improve the tracking results in crowded environments where the measurements
are unreliable. Pellegrini et al. [17] propose a Linear Trajectory Avoid (LTA)
model for human motion prediction, which takes into account the social interac-
tions between persons as well as their orientation towards a destination. Kratz et
al. [18] predict human movements by capturing the spatial and temporal varia-
tions in the crowd. Ziebart et al. [19] propose a planning-based motion model,
which can model the goal-directed trajectories of pedestrians by using maximum
entropy inverse optimal control. Wang et al. [20] propose a novel tracking ap-
proach which incorporates the scene interaction model and a neighboring object
interaction model to respectively perform the long-term and short-term persons’
movements prediction. Ali et al. [21] propose a floor fields based motion mod-
el for tracking persons in crowded scene, and it also utilizes the information of
scene structure to assist in tracking. In contrast, Rodriguez et al. [22] extend
this work, and propose a Correlated Topic Model (CTM) for tracking persons in
unstructured crowded scenes. On the other hand, researchers also focus on mod-
eling the social behavior of pedestrians, and representative publications include
[23, 24, 25, 26, 27].

In this paper, our model shares some characteristics with the works [21, 17],
but differs in two crucial aspects: Firstly, although both the two works both uti-
lize the information of scene structure, the two approaches can be only applied
for some simple scene (e.g. single sink/source, single crowd flow). In contrast,
our model are suitable to any crowded and complex scene (e.g. structured and
unstructured, single and multiple crowd flow or sink/source). Secondly, Ali et al.
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[21] use the cellular automaton model atop a set of scene-specific “floor fields”
to make tracking in extremely crowded situations tractable, which can be seen as
“group behavior modeling”. On the contrary, Pellegrini et al. [17] model single
pedestrian in the world coordinates. Compared to the two approaches, our mod-
eling can be seen as “group behavior modeling”+“single pedestrian modeling”.
To the best of our knowledge, the proposed model is the first tracking model that
intensively explores the relationship between pedestrians’ social behaviors and
the complex scene in which they are walking.

3. Tracking Model

3.1. Problem Formulation and Overview

We begin by introducing notations to formulize our problem. At time ¢, pedes-
trian ¢ is represented by x; ; = (pi, Vit), Where p;; = (x,y) denotes its 2D posi-
tion on the ground plane and v; ; its velocity vector at time ¢. Based on the current
states X = {x;+} of n pedestrians (i = 1...n), our model should estimate the state
x; ++1 of pedestrian ¢ in time ¢ + 1, especially for its desired velocity V;; in next
step.

While the pedestrians are walking in the large and high density scene, three
factors will influence their short-term path planning (as shown in Fig. 2): (1)
Global scene structure. A person usually plans to go to a specific exit of the
scene, walks on the common road, avoids the obstacles and finds the shortest
path. (2) Local instantaneous crowd flow. At some specific time, some local
areas will be quite crowded and become a crowd flow. A person in a particular
crowd flow will be greatly influenced by it because he must follow other persons
in it. For instance, as shown in Fig. 4-b, at a specific time in a subway station,
a large number of persons were just getting off from a train and walking together
to catch another train, which were becoming a crowd flow. (3) Repulsive force of
pedestrians. The motion of a pedestrian is also influenced by the centrifugal force
[24] from its neighboring persons, as he wants to keep a comfortable distance
from others, and he will feel increasing discomfort as he gets closer to a stranger.

Therefore, we propose an energy function, which takes into account these
factors:

E(vi,ta Pi,t) = Eglobal(vi,ta pi,t)"’

- ~ (1)
ai,tElocal<Vi,t7 pi,t) + (1 - Oéi,t)Fcent(Vz',ta pi,t)7

where Fg;q 18 the global scene structure energy, £,.q the local crowd flow ener-
gy and F,.,,; the norm of repulsive force factor of pedestrians, and «;; € (0,1) is



(a) Online learned scene struture (b) Planned path of target 201

Figure 3: Global scene structure energy. Given the online learned scene structure (Fig. a), we
can find possible planned paths of person 201 with A* algorithm (Fig. b), and these paths can be
utilized to compute global scene structure energy in Eq.(3).

utilized to control the influence of Ej,.,; and Fi.,;, which depends on the density
of crowd flow S, (), where x;; € S,(¢). This could be easily understood: while
the density of some local area is quite low, there would be little crowd flow or the
persons’ number in this crowd flow is limited, and the pedestrians’ motion will be
greatly influenced by its nearby persons, not by the crowd flow. In contrast, the
motion of persons will be more influenced by the crowd flow while the local area
density becomes specially high. The details about how to compute this parameter
will be discussed in Section 4.

Hence, the next desired velocity Vv, ; for pedestrian i can be computed by min-
imization of the energy function E(V, ¢, p; )

v;t = argimin E(Gi,ta pi,t)- )

Vit

In the next subsections, we will provide the details about how to compute this
energy function.

3.2. Global Scene Structure Energy and Local Crowd Flow Energy

Given the current position p;; of pedestrian ¢, online learned scene structure
map and N exits/entrances (as shown in Fig. 3-a), it is easy for us to obtain N
planned trajectories {L} ,(x,y)};Y, for pedestrian ¢ at time ¢ with A Star search
algorithm (as shown in Fig. 3-b). Hence, a person would like to make its motion



(a) Target 201 in frame 263 (b) Crowd flow (c) Motion distribution
Figure 4: Crowd flow energy. Given the online learned crowd flow (Fig. b), we can compute its

motion distribution (Fig. c). With the help of motion distribution, crowd flow energy can be easily
computed by Eq.(6).

be more like to its planned path, and the £, can be computed by:

Eglobal Vit pl t Z wy X
3)

Vit aLi,t(Pi,t)
exp(—|| T,

H - axay H /201)7

OLL ,(Pi,t) . . .
where %r;’t) is the tangent vector of Li,t (z,y), and it denotes the velocity vector

of Lé,t(% y) at position p; ;. oy is a constant parameter and wj is the weight of the
possible planned trajectories.

We need to compute pedestrians’s planned paths in each iteration, and these
paths are able to be updated per frame based on pedestrians’ movements. Besides,
many path planning algorithms are able to be used here, and we select the A Star
search algorithm due to its fast and effectiveness. On the other hand, we note that
not all the planned paths will significantly influence the computation of global
scene structure energy because pedestrians usually follow only one path to move.
Hence, the computation of planned path weight becomes a very important prob-
lem. In this research, the wj; is depend on the similarity between person’s current
trajectory and the planned ones. Here, we utilize the approach of Wang et al. [28]
to measure the similarity of two trajectories. In each iteration, the weights of each
planned trajectories will be automatically computed; once the weights of planned
trajectories are very small, we throw them and stop making new path planning for
these exits/entrances.

Meanwhile, the local crowd flow energy should be also computed. A person in
a particular crowd flow has to make its motion be close to the crowd flow. Hence,
the motion distribution for a specific crowd flow should be extracted firstly. Given
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the the crowd flow S,(t), where x;; € S,(t) (as shown in Fig. 4-b), its motion
distribution can be computed by:

mSp(t)(pi,t) = exp(— < (@(Pi,t)a@(m,t))a

. 4
(cos(a, ) (Prs). sin (0, o (Dir)) > /), X

here <, > stands for dot product, 7, is a constant parameter, (U, (p; ), Uy(Piz)) is
the velocity expectation of cluster S,(t) at a particular position, and ag \(Pi,) is
the principal component in the distribution of flow orientation:

M
@Sp(t)(Pz‘,t) = Z WmN(OéSp(t)(Pz‘,t)§ 2 U)> &)
m=1

where Eq.(5) is the GMM model and its parameters 7, can be obtained through
EM iteration. An example of Eq.(4) is shown in Fig. 4-c, the color denotes the
speed, and the arrows display the principal orientation.

Hence, the local crowd flow energy Ej,.,; can be computed by:

Elocal(Qz’,ta pz‘,t) = exp(—||@-,t - msp(t)(pi,t)||2/2o-§>7 (6)
where o5 is a constant parameter.

3.3. Repulsive Force Factor

For the pedestrian ¢, the repulsive effects from pedestrian j depend not only on
the relative velocity between them, but also on the distance of them (i.e. the head-
way), and hence these effects can be expressed by a force term with the following
form:

Fij = mia;; = —m; f(vij, [|Pijl] e, (7
where a;; is the acceleration of pedestrian ¢ caused by pedestrian j, m; the mass
of pedestrian ¢; f(v;;,||p;;||) is the function of v;;, and ||p;;|| to be determined.
pi; is the distance between pedestrian ¢ and j, and it should be:

Pij = Pj — Pi- ()

v;; denotes the projection of the relative velocity of of pedestrian 7 and j in the
direction e;;, and can be computed by:

1. ~
Vij = 5[(Vz‘,t —Vit) - e + [|(Vie — Vi) - el )
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Figure 5: Repulsive force of pedestrians. As shown in this figure, person 92 was subjecting to
the repulsive effects from person 25, 187 and 186. The red half-circle show the angle of view for
person 92 as discussed in Eq. (14), the black arrows show the repulsive force from person 25, 187,
and 186, and the color lines show the pedestrians’ trajectories.

Pij
e, = . (10)
T byl
From Eq.(7), we can obtain
lag || = f(viz |lpisl])- (11)
According to the proof of [24], there should be
|az'j|||2pzj|| _c (12)

where C'is a constant depending on the pedestrian’s character. For simplicity, we
assume C' = 1, and obtain
vZ,

’ [pisll



(a) Tracking results (b) Density distribution (c) Learned scene structure

Figure 6: Global scene structure learning. With the help of tracking results (Fig. a), we can
compute incremental density distribution (Fig. b), and the global scene structure can be obtained
by thresholding the incremental density distribution and the gradient searching.

If (Vi:—v;.)-€; > 0,1ie., pedestrian i gets close to pedestrian j, the repulsive
effects occur. However, if (V;; — v;) - €;; < 0, i.e., pedestrian j walks faster than
pedestrian ¢, there are no repulsive effects. Larger v;; creates greater repulsive
effects in the former case. We assume that pedestrians react to those who are
within their angle of view and the field of vision is 180° (as shown in Fig. 5), this
situation can be characterized by the following coefficient:

1 » Vii €+ |[Vie - el
2 1\%

Ky = (14)

Hence, the Centrifugal Force between pedestrian ¢ and j should be given in the
form
Vz
F,; = —mK;j—— (15)
I mH
Therefore, for pedestrian ¢, its norm of repulsive force factor of J neighboring
persons (as shown in Fig. 5) can be computed by:

Vit)
Fcent<vzt7pzt Hzmz i H ZJH (16)

uH

4. Application of Model by Online Semantic Scene Learning

In order to implement the proposed tracking model, we need the global scene
structure to compute Eq.(3), and the local instantaneous crowd flow to compute
Eq.(6). In this research, we combine our model into a “tracking-learning loop”
[29], which can make the overall process can be fully online and automatic: once
the tracking results are obtained with our model, they are collected and can be
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Frame: 263 : Frame: 263

(a) Tracking results (b) Crowd flow

Figure 7: Crowd flow learning. With the help of tracking results (Fig. a), the crowd flow (Fig. b)
can be easily obtained by online clustering.

in turn utilized for semantic scene learning. In this section, we will provide the
details about them.

4.1. Global Scene Structure Learning

With the proceeding of tracking, it is easy for us to obtain a large number
of trajectories of pedestrians, and we can utilize them to learn the global scene
structure. Firstly, we should estimate the spatial extent of these trajectories and it
can be described by the density distribution. Given all the trajectories L;;(z, )
we obtained at time ¢, the density distribution at position (z, y) is estimated as:

Dgtobar (T, Y, 1) =

(wi,yi)E€Li ¢

> exn(=l(@ = @iy = y)*/ma),

Li,tEQ

7)

where (2 is all the trajectories we have obtained at time ¢, 74 a constant parameter.
Therefore, the dominant paths of the scene were easily extracted by thresholding
the incremental global density distribution (as shown in Fig. 6).

On the other hand, the exit and entrance of the scene are two important scene
properties, which are also called sources/sinks. The sinks/sources can be easily
detected from the global density distribution © giop4;. As shown in Fig. 6-c, the
sinks/sources usually occur at the region of great change of the global density
distribution after thresholding. Moreover, the changed direction must follow the
principal orientation of the crowd flow. Hence, the location p};,,;. of sinks/sources
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can be easily detected by a gradient searching at the principal orientation of den-
sity distribution:

Piink = arg max(< VOg ) (Psink: t), Up/|Tp| >), (18)
Psink
where where 7, is the principal direction of the crowd flow Sy(t), and Dg ) is its
density distribution.
An example is illustrated in Fig. 6, as the 1090 frames proceeded, the domi-
nant paths and sinks/sources of the scene were obtained, and this scene structure
map can be utilized to find persons’s planned path to compute 0 in Eq.(3).

4.2. Crowd Flow Learning

The crowd flow S,(t) can be seen as a group of persons who have simi-
lar motion and spatial information, they are usually going to the same destina-
tion with close velocity. Hence, once we obtain the trajectories of pedestrians
at time ¢, they should be clustered into n clusters {S,(¢)};_;. In order to dy-
namically reflect the change of crowd flow, the clustering must be online and
can be seen as a function of time ¢. We consider each cluster S;(¢) as a mov-
ing hyperplane. Thus, we can model a union of n hyperplane in R”, where
S,(t) = {x € R : b;(t)x = 0},p = 1,...,n, where x is the person state,
b(t) € RP, as the zero set of a polynomial with time varying coefficients using
normalized gradient descent. Then the hyperplane normals are estimated from the
derivatives of the new polynomial at each trajectory. Lastly, the trajectories are
grouped by clustering their associated normal vectors. An example is illustrated
in Fig. 7, for more details about this part, please refer [30, 29].

On the other hand, we have to control the influence of the crowd flow in the
energy function. Let us come back to Eq.(1), for the pedestrian ¢, the influence
from crowd flow S,(¢) will be depend on the density distribution of this crowd
flow, and it can be computed by:

Ot = 1-— eXp(—QSp(t)(Pi,t;t)), (19)

where pedestrian x;; € S,(t), a;; € (0, 1), and this equation can be understood
like this: at a specific time ¢, a person x;, in crowd flow S,(¢) were walking in
position p; ;. If this area in this crowd flow is quite crowded, this person’s motion
will be greatly influenced by this crowd flow. In contrast, this influence will be
little.

In summary, we can utilize the online learned scene structure and crowd flow
to compute Eq.(3) and Eq.(6). Then, the next desired velocity v;; for pedestrian i

12



Frame 189 Frame 289 Frame 317 Frame 396

Figure 8: Prediction results without updating. The first row is the prediction results of target 220,
the second row is its global planned path, and the third row is the motion distribution of its crowd
flow. Please see our supplementary video for more details.

can be computed by Eq.(1) and Eq.(2). Lastly, the state x; ; of pedestrian ¢ can be
easily obtained by any Bayesian filter, such as Kalman filter or particle filter.

5. Experiments and Results

We utilized the proposed tracking model to track hundreds of pedestrians in the
lobby of JR subway station (about 60mx35m). Eight single-row laser scanners
(LMS291) produced by SICK were utilized. They were set above 10cm on the
ground surface and performing the horizontal scanning with a frequency of 37
fps. We utilized a time server to deal with time synchronization problem between
different sensors and the calibration was conducted by several control points in a
box. For more details about this part, please refer [1]. The selected data used for
evaluation was from 7:00 am to 8:30 am when was a very busy time in Tokyo.
We utilized genetic algorithms (GA) to optimize Eq.(2), and o4, 05 in Eq.(3) and
Eq.(6) was set to 0.3. In this section, we will present our experimental results and
perform the quantitative evaluation and comparison.

5.1. Tracking Results

In order to test the prediction performance of our model, we utilized it to track
single target in crowded environments without any observation updating, and Fig.

13



(a) Frame 198 (b) Highlight () Frame 396 (d) Highlight

Figure 9: Results of multi-target tracking. The first row is the results with second-order motion
model, and the second row is our results. We can see that the trajectories with second-order motion
model was quite short and frequently broke. In contrast, our model provided more accurate results.
Please see our supplementary video for more details.

8 shows the details about this experiment. The first row is the prediction results
of target 220, the second row is its global planned path, and the third row is the
velocity distribution of its crowd flow. In frame 289 and 317, we can see that the
observation is terrible, which is quite difficult for some detection-based trackers.
However, our model still maintained the correct tracking of target 220 (as shown
in frame 396).

Then, we implemented our model with the observation updating in a particle
filter framework [31], and utilized it to track multiple targets in the high density
scenarios. The tracking results are shown in Fig. 9, where the first row is the
results with second-order motion model, and the second row is our results. From
this figure, we can see that the trajectories with second-order motion model is
quite short and frequently broke. In contrast, our model provide more accurate
results.

5.2. Performance Evaluation

To evaluate the performance of the proposed model, we selected 5000 contin-
uous frames which occlusions or merged measurements frequently took place and
made a statistical survey about how many challenging situations (such as occlu-
sions or merged measurements condition) we could deal with. The ground truth
was obtained by a semi-automatic way: trackers+manual labeling. We firstly
utilized the particle filter-based trackers [31] to obtain the rough results of pedes-
trians, and then manually edited or labeled some incorrect tracking results. More-
over, we set up two cameras in the experimental site (as shown in Fig. 10) to help

14



Figure 10: Recorded video for ground truth labeling. We set up two cameras in the major
exsit/entrance of station where large numbers of pedestrians would pass. With the help of these
recorded videos, some confusing trajectories were able to be easily recognized and correctly la-
beled.

us label the ground truth. For data synchronization, each laser scan and video
stream was stamped with a time log at the moment it was captured, or started to
be captured, using the client computers local clock, which was corrected period-
ically according to that of the server computer. For more details about it, please
refer [32]. With the help of these recorded videos (as shown in Fig. 10), some
confusing trajectories were able to be easily recognized and correctly labeled.

Based on the ground truth, the occlusions or merged measurements conditions
were able to be automatically found. Here, we assumed that if the distance be-
tween two pedestrians was smaller than 0.3m, a merged measurements condition
was counted. Meanwhile, for a pedestrian’s trajectory, if it cannot find any laser
measurements at a specific time, a occlusion condition was as well counted. In
addition, by comparing the tracking results with the ground truth, it is easy for us
to automatically recognize different failed tracking situations, including missed
targets, false locations, and identity switches. For more details about this part,
please refer to our previous work [33]. Once one of the occlusions or merged
measurements condition occurred, but no failed tracking was caused by it, a suc-
cessful disposal was counted. The details for this are shown in Table 1. From this
table, we can see that the trackers with the proposed model are able to easily deal
with most occlusions or merged measurements conditions, which is difficult for
the second-order motion model.

In addition, we also evaluated the tracking accuracy under different crowd
density conditions in these 5000 frames, and the results are shown in Fig. 11. The
bottom figure shows the normalized pedestrian density in 5000 frames, and the top

15



Table 1: Disposal of Challenging Situations

Occlusion Situation Merged Measurements
Total/Disposal Disposal Rate Total/Disposal Disposal Rate
Tracker with proposed model 8932/7365 82.46% 28671/23293 81.24%
Tracker with second-order model 8932/3851 43.11% 28671/10137 35.36%
9% T T T
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1E T T T T 1 7
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05k Tt ) e T3
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Figure 11: Tracking accuracy under different crowd density conditions. The bottom figure shows
the normalized pedestrian density in 5000 continuous frames, and the top figure shows the tracking
accuracy of our model in these frames.

figure shows the tracking accuracy in these frames. In this evaluation, we found
that there were approximately 1367 pedestrians passing through exists/entrances
in these frames, and the proposed tracker obtained 86% accuracy in average under
various crowd density situations.

5.3. Quantitative Comparison

A quantitative comparison was conducted among four methods: Song et al.
[29], Cui et al. [34], second-order motion model [13]+particle filter (PF) tracker
and our model+ PF tracker.

We made a statistical survey of 5000 continuous frames to evaluate the track-
ing performance of these methods in the high density scene. The ground truth was
obtained by the same way as discussed in the last subsection. The failed tracking
included missed targets, false location and identity switch, which was able to be
automatically computed from the ground truth. The details about this are illus-
trated in Fig. 12 and the overall success rate of these methods is shown in Table
2. From Fig. 12, we can see that our model has the best performance among all
the methods in the high density scene and the proposed dynamic model provides
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Our Method

Ours
PF (second-order motion model)
Song et al. (CVPR10)

Cui etal. (CVPROB)

3000
(b) Targets number in 5000 frames

Figure 12: Quantitative comparison among four methods. (a) shows the correct tracking of four
methods in 5000 continuous frames. (b) shows the target number in these frames.

Table 2: Success rate among four methods

Algorithm Success Rate Missed Targets False Location Identity Switch
Song et. al (CVPR10) 82.3% 52.3% 26.3% 21.4%
Cui et. al (CVPR06) 77.6% 43.7% 22.5% 33.8%
PF (second-order motion model) 62.7% 39.2% 28.3% 32.5%
Our Method 86.8% 31.6% 32.7% 35.7%

approximately 24% performance improvements over second-order motion model.
As the illustrated in frame 515 and 3860, the trajectories obtained by the trackers
with second-order motion model were inaccurate and frequently broken. In con-
trast, with the help of our model, the trackers were able to easily maintain the long
time and robust tracking.

5.4. Computational Cost Evaluation

The computational cost evaluation was conducted on the same 5000 contin-
uous frames. The core algorithms of the proposed model were implemented by
the non-optimized MATLAB code, and the evaluations were run on a PC with the
Core 17-2620M/S2 Intel-processor. The computational cost of proposed model
mainly contained five parts: global scene structure energy computation (it did not
contain the scene structure learning, we utilized the off-line learned one in this
experiment), local crowd flow energy computation, repulsive force factor compu-
tation, GA optimization computation, and some other trivial computation. Hence,
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Figure 13: Computational cost evaluation. The bottom figure shows the normalized pedestrian
density in continuous 5000 frames, and the top figure shows the computational cost percentage of
different parts for average person in these frames.

in this evaluation, we computed the computational cost percentage of these parts
for average person in these frames. The details of this evaluation are shown in Fig.
13, the bottom figure shows the normalized pedestrian density in 5000 frames, and
the top figure shows the computational cost percentage in these frames.

From this figure, we can see that the global scene structure energy and local
crowd flow energy computation were usually in a large proportion, and they were
mainly caused by the path planning and online crowd flow learning. Meanwhile,
the computational cost of GA Optimization is very unstable: in some cases, sev-
eral iteration round after, GA algorithm was able to find local optimum, and only
took approximately 7% of total computational cost. But in some bad cases, the
optimization did not execute successfully, and it almost took more than 45% of
total computational cost. In contrast, the computational cost of repulsive force
factor was usually in a very small proportion. At present, because all of the algo-
rithms are implemented by the non-optimized MATLAB code, the computational
cost of proposed model is a bit expensive, and it usually needs 3-4s per frame for
single pedestrian in average. However, it will have a much lower computational
cost if it is implemented by the well-written C++ code, and it is able to be applied
into more real-world applications.

6. Conclusion and Discussion

In this paper, we present a novel dynamic model for tracking hundreds of per-
sons in the extremely crowded environments. This model incorporates the inten-
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sively explored semantic scene knowledge and social interactions among persons,
and the experimental results on laser-based system have demonstrated its feasibil-
ity and robustness.

In the future, this research should be also improved and extended in the fol-
lowing ways: (1) At present, we have not applied the proposed model to the video
data because the measurements from the two sensors are quite different [32]. From
the application view, that is meaningful and necessary because the camera sensors
are much cheaper and more common than the laser scanners. However, compared
to the laser-based tracking system, the facing challenges of camera-based ones are
also obvious: (a) The computational cost of image processing will be much huger
than the laser scanner data. (b) It is usually difficult to obtain the robust detec-
tions in real environment. (c) It is sensitive to the change of lighting and weather
conditions. In the future, we will try to implement and test the proposed model on
the video data. In such cases, the comparisons or evaluations with the state of the
art tracking model [21, 17] for video are able to be conducted. (2) We find that
our method sometimes does not perform well for events in which a person goes
against the dominant flow of a dense crowd, and some strategies [35] should be
applied to deal with them. (3) At present, the computation cost of our method is a
bit expensive, some optimization strategy should be conducted. (4) Based on the
proposed model, some abnormal detection approaches are able to be explored in
future.
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