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Abstract— The building of an object-level knowledge base
is the foundation of a new methodology for many perception
tasks in artificial intelligence, and is an area that has received
increasing attention in recent years. In this paper, we propose,
for the first time, to mine category shape patterns directly
from a large urban environment, thus constructing a category
structure base. Conventionally, category patterns are learned
from a large collection of object samples, but automatic object
collection requires prior knowledge of category structures. To
solve this chicken-and-egg problem, we learn shape patterns
from raw segmentations, and then refine these segmentations
based on the pattern knowledge. In the process, we solve two
challenging problems of knowledge mining. First, as some cate-
gories have large intra-category structure variations, we design
an entropy-based method to determine the structure variation
for each category, in order to establish the correct range
of sample collection. Second, because incorrect segmentation
is unavoidable without prior knowledge, we propose a novel
unsupervised method that uses a pattern competition strategy
to identify and subtract shape patterns formed by incorrectly
segmented objects. This ensures that shape patterns are mean-
ingful at the object level. Experimental results demonstrated
the effectiveness of the proposed method for category structure
mining in a large urban environment.

I. INTRODUCTION

Object-level visual knowledge is of great importance in
many areas of artificial intelligence, such as computer vision,
robotics, and data mining. Recently, increased attention has
been paid to the mining of categorical visual knowledge, and
this has led some researchers to attempt to find an efficient
way of constructing a category knowledge base. The knowl-
edge base can directly provide high-level knowledge for
many visual tasks, such as object retrieval, recognition, seg-
mentation, and tracking. In contrast to conventional learning
of a specific model for each different task, the construction of
a general and comprehensive category knowledge base may
pave the way for a new methodology for advanced visual
tasks.

Some pioneering work has mined category knowledge
from images via unsupervised object discovery [15] and
semi-supervised learning with image search engines [13],
[14]. These image-based approaches mainly use bag-of-
words models without encoding spatial structure information.
However, in many cases, it is the 3D structure that dictates
the function and thus the category of an object. Thus,
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Fig. 1. Category structure knowledge mining, sample collection, and
environment understanding are achieved in an unsupervised manner from
the unlabeled 3D point cloud of a large urban environment.

learning a category structure base from a large 3D point
cloud could present a practical alternative. However, the
mining of category structures is hampered by the following
chicken-and-egg conundrum:

1) In general, accurate point cloud segmentation and
classification requires prior knowledge of the global structure
of various objects to overcome challenges caused by the
possible complex object structures and backgrounds, as well
as intra-category structure variations. For example, objects
with complex structures may be segmented into several
distinct categories, connected objects may not have clear
boundaries for segmentation, and objects in some categories
may have relatively low structure similarities.

2) On the other hand, prior category knowledge needs to be
learnt from a large collection of object samples in different
categories, but accurate sample collection depends on the
accuracy of the classification and segmentation.

Some previous approaches are of great significance in
terms of supervised classification [20], [21], [22], [23], [24],
[25], [26], [28] and unsupervised segmentation [30] of 3D
point clouds based on local features. Other studies contribute
to the learning of common structures of different categories
from well-segmented 3D objects [29] or environments that
are clear for segmentation [3], [5]. However, for the con-
struction of a category structure base, we must collect object
samples in an unsupervised manner, and then learn all
structural patterns of each category from the unlabeled 3D
point cloud of a large and real environment, which requires
the simultaneous solution of the two interdependent issues
mentioned above in a single framework.

Thus, we propose a two-step category-mining method
consisting of repetitive shape pattern extraction and in-
correctly segmented pattern subtraction. In the first step,
we cluster the objects produced by raw segmentation into
different repetitive shape patterns. We learn the common
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Fig. 2. Flowchart of our proposed framework showing the two main steps—repetitive shape extraction and unsupervised incorrect shape pattern subtraction.
In the first step, we cut, match, and cluster object samples in the environment. Simultaneously, the minimum description length (MDL) principle is used to
estimate the intra-category variation of each cluster. These clusters stand for the initial shape patterns, and object segmentation is then refined with shape
pattern knowledge. In the second step, we use pattern competition in the descriptive area to identify and subtract incorrect patterns. Thus, we ensure that
the extracted shape patterns are meaningful at the object level, which is a key issue for category mining. Here, two out of the four shape patterns on the
right are subtracted, and the orange box contains the remaining two.

global structure of objects in each shape pattern, and further
use this to refine the object segmentation within each cluster.
During the clustering process, we must determine the range
of each category to simultaneously avoid both over division
of loose categories and low purity of dense categories. Thus,
we utilize the minimum description length (MDL) principle
to control the clustering process and provide a global solution
to the estimation of intra-category shape variation.

Next, we wish to determine how to detect incorrect seg-
mentations without high-level category knowledge? Strictly
speaking, this is a high-level problem that requires the
human object cognition; nevertheless, we can handle it in
a complex but practical fashion. In the second step, our key
contribution is the proposal of an unsupervised method to
detect and subtract incorrect shape patterns. The descriptive
areas of correct and incorrect patterns usually overlap in
the environment, as the incorrect patterns mainly consist of
partially segmented objects. Thus, based on the assumption
that the correct patterns are those that are able to encode
the environment with the fewest conflicts within their de-
scriptive areas, we define an energy function to model the
competitive relationship between different shape patterns in
object representation. In this way, the detection of incorrect
segmentations is converted into a global energy minimization
problem (Fig. 2).

The main contributions of this paper are as follows. We
propose, for the first time, unsupervised construction of a
3D category shape knowledge base as a starting point for
many advanced visual tasks, and design an algorithm for
category discovery and sample collection. When applied to
the mining of category structures from a complex environ-
ment, our proposed method is the first to simultaneously deal
with incorrect segmentations and considerable intra-category
shape variation.

II. RELATED WORK

Point cloud processing has developed rapidly in recent
years. In this section, we discuss a wide range of related
work to provide a better understanding of category structure
mining.

Knowledge mining: The segmentation and the classifi-
cation (point labeling) of 3D point clouds are two kinds of
3D environment understanding [20], [21], [22], [23], [24],
[25], [26], [27], [28]. Munoz et al. [20], [28], Triebel et

al. [21], and Anguelov et al. [27] made a breakthrough that
they employed associative Markov networks (AMNs) with
a max-margin strategy for supervised point cloud classifica-
tion and segmentation. However, knowledge mining mainly
requires learning to be conducted from unlabeled data in an
unsupervised or semi-supervised manner. Besides, the mined
knowledge should also represent the global structure of an
object, rather than just meeting segmentation criteria based
on local information.

Nevertheless, we also use our mined category structures
to achieve scene understanding, and perform experiments to
compare its performance with the classical supervised AMN-
based point labeling.

Object-level global structure: A number of pioneering
studies have contributed to the extraction of high or middle
level structure knowledge. Hebert et al. [10] used some high-
level shape assumptions to discover various structures in the
environment, whilst Ruhnke et al. [8] learned a compact
representation of a 3D environment based on Bayesian
information criteria. Endres et al. [4] used latent Dirichlet
allocation to discover 3D objects. These methods focused
on part-level patterns, whereas we expected to extract global
structures with the correct object-level semantemes.

Intra-category variation: Closer to our field of category
structure mining, some approaches for the collection of 3D
object samples have been proposed. Herbst et al. [1], [2]
detected which objects had been moved across multiple depth
images of the same scene, and Somanath et al. [9] detected
the same objects appearing in different 3D scenes. Detry
et al. [7] learned a general hierarchical object model from
stereo data with clear edges. Category structure mining is
not limited to the segmentation of objects with some specific
shapes or recurrent objects, but also includes the discovery
and learning of all shape patterns in each category, including
any possible shape variations. From this viewpoint, the most
closely related work involves repetitive shape detection [3],
[5].

However, category structure mining must also be achieved
in a more general environment, in which ground subtraction
cannot be used for object segmentation, as many objects
with irregular shapes could be connected to each other. In
other words, we have to solve the chicken-and-egg problem
mentioned in Section I. Thus, we learn to correctly segment
objects and subtract incorrect ones. In our experiments, we
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Fig. 3. Object samples and local features. There are two object samples—
cars on the side of the street and trees with scrolls. Values in the red, green,
and blue channels of the point color show {linear, surface, block}-ness of
the local geometry, respectively.

realize the core idea of conventional repetitive shape detec-
tion in competing frameworks, and evaluate the performance
of our method in a general urban environment.

III. REPETITIVE SHAPE PATTERN EXTRACTION

Repetitive shape pattern extraction is the first step of
our system and achieved using the following processes.
First, we search for object samples in all positions of the
environment, and then apply 3D matching to calculate the
object similarity. Based on the object similarity, we use
hierarchical clustering to extract repetitive shape patterns
in the environment. Finally, we refine the segmentation of
object samples in each cluster based on the cluster’s common
shape.

This style of shape pattern extraction—combining match-
ing and clustering—encounters two challenges in a real envi-
ronment: 1) incorrect segmentation subtraction, and 2) intra-
category variation determination without prior knowledge of
category structures.

To tackle the first challenge, we use a cluster’s shape
pattern to refine the raw segmentation of its objects, and leave
the detection and subtraction of incorrect shape patterns to
be performed afterwards (see Section IV).

For the second challenge, it is necessary to estimate a
specific intra-category shape variation to help determine the
sample range of a given category. Otherwise, a category
with a large shape variation could be incorrectly divided
into several sub-categories, or a category with a small shape
variation could be erroneously grouped with other objects.
Thus, we use the MDL principle to incrementally estimate
the intra-category structure variation during the clustering
process.

A. Object sampling and features

A brute-force search is employed to detect object samples
in the environment. These samples are then segmented by a
cylinder of height s and radius s/2. The point cloud within
the cylinder is considered as the raw object segmentation.
The environment is divided into local cells, from which
local features are extracted. Object samples are also rep-
resented at the cell level. Considering the noise and point
density, cells are defined as cubes with an edge length
of 1.25m in order to obtain reliable local features. An
object sample is represented by the local features and 3D
coordinates of a set of cells. We use three geometric features
inspired by the spectral analysis of point clouds [19], [12].
Given the point cloud within a cell, we define λ1≥λ2≥
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Fig. 4. Cell-level 3D matching. In this figure, we use cell centers to
represent the object. For clarity, we picture a smaller cylinder and a simpler
object than in the real parameter settings.

λ3 to be the eigenvalues of the scatter matrix over these
3D points. We use { f ∗1 =λ1/max{

√
λ2λ3,ε}, f ∗2 =max{λ2/max

{
√

λ1λ3,ε},
√

λ1λ3/max{λ2,ε}}, f ∗3 =
√

λ1λ2/max {λ3,ε}} to
measure the relative {linear, surface, block}-ness of the local
geometry. ε is set to 0.1 to prevent too large values of f∗.
The features are normalized f= f∗/ 3

√
f ∗1 f ∗2 f ∗3 , and then each

dimension is normalized to the same variation. Fig. 3 shows
the object samples and their local features.

B. 3D matching and similarity graph

To make a full use of spatial information, we use 3D
matching to calculate the structure similarity between two
samples. The matching uses both global positions and local
features. We can ignore translations in matching and only
consider horizontal rotations, as object samples are searched
in all possible positions and assumed to stand on the ground.

Given two object samples A and B with their cell sets
{ai} and {b j}, i = 1,2, ...,nA, j = 1,2, ...,nB, their sets of
local features and spatial coordinates are denoted as {fai},
{fb j} and {pai}, {pb j}, respectively. Fig. 4 illustrates some
variables for clarity. When A and B are matched under
horizontal rotation θhor, the matching probability of two cells
ai and b j is calculated as follows:

P(pai ,pb j , fai , fb j |θhor) = P(pai ,pb j |θhor)P(fai , fb j) (1)

P(pai ,pb j |θhor)∼N (distθhor(pai ,pb j)|µ = 0,σ2) (2)
P(fai , fb j)∼ βN (fai − fb j , |µ = 0,Σ) (3)

where, distθhor(pai ,pb j) indicates the distance between ai and
b j with rotation θhor; Σ is the covariance matrix of local
features, σ2 is the variance of position distances, and β is a
weighting for local features (β = 1, here).

The probability that a cell ai in A is well matched to B,
is calculated as:

P(ai,B|θhor)= maxb j P(pai ,pb j , fai , fb j |θhor)

≈ ∑ j P(pai ,pb j , fai , fb j |θhor) (4)

The approximation is based on the fact that the probability
of ai matching to its best matching cell in B is usually far
greater than the probability matching to other cells in B.
Thus, the similarity between A and B is the maximum of the
following value:

max
θhor

∑i P(ai,B|θhor)+∑ j P(b j,A|θhor)

nA +nB
(5)

The minimization problem can be solved via gradient descent
methods with some initial pose estimations, or just exhaus-
tive search.



C. MDL-based hierarchical graph clustering

Repetitive shape patterns are extracted via hierarchical
graph clustering. The MDL principle is used to provide a
global solution to the intra-category shape-variation estima-
tion problem for an accurate boundary of each cluster. Let
G = (V,E) be an undirected and weighted similarity graph.
Each vertex vi ∈V denotes an object sample, and each edge
ei j ∈ E indicates the sample similarity that is defined by (5).
The total description length provides a global penalty of the
current clustering status, and is formulated based on [17] as
follows:

L(V,C) = L(V |C)+L(C) (6)

where, C = {c j} is the current cluster set; L(C) is the
description length of the cluster division; L(V |C) represents
the residual uncertainty of object samples due to their intra-
cluster variations.

L(C) = −∑
i

Pi logPi (7)

L(V |C) = −α ∑
i

Pi logDi (8)

where, Pi = ‖ci‖/‖V‖ is the probability of observing cluster
ci; Di = ∑e jk∈E:v j ,vk∈ci e jk/‖{e jk ∈ E|v j,vk ∈ ci}‖ is the clus-
ter density of ci and measures the intra-cluster variation; α is
a weighting that connects the cluster density and the cluster
uncertainty (α = 1.5, here).

The term L(C) encodes the prior penalty of each cluster,
as small clusters have large observation uncertainties in the
environment. The term L(V |C) assigns the cluster with large
intra-cluster variation with large penalty. The minimization
of L(V,C) balances these two terms and estimates the suitable
intra-category variation via a global optimization.

Before clustering, each object sample is initialized as a
cluster. Then, we achieve the clustering via the gradient
descent method. In each subsequent step, the pair of clusters
(ci,c j) with the steepest descent of description length is
merged, as an approximate solution of description length
minimization.

max
ci,c j

L(V,C)−L(V,(C∪{ci∪ c j})\{ci,c j})
‖ci‖+‖c j‖

(9)

From all the learned clusters, we select ones with a size
no less than τ as reliable clusters (τ = 30, here) for further
processing.

D. Object segmentation

Each cluster stands for a specific shape pattern in the en-
vironment, and we use this top-down information to segment
objects in each cluster (Fig. 5). We match each pair of object
samples in a cluster, and the most frequently matched parts
of each object sample are taken as the true body of the object.

Given sample A with its cells {ai} (i = 1,2, ...,nA) and
sample B, their matching rotation θhor is calculated by (5).
P(ai,B|θhor) indicates the probability that ai is well matched
to B under rotation θhor calculated by (4). If P(ai,B|θhor) is
greater than a threshold (0.02 here), then ai is considered well
matched to B. Those cells that cannot well match enough

Fig. 5. Object segmentation. Here, the pole (left) and the wall (right) on
the side of the street are removed, according to the common structure of
the street pattern.

object samples (at least 60% of the samples in the cluster)
will be considered as a part of the background and removed
from A.

IV. INCORRECT PATTERN SUBTRACTION BY PATTERN
COMPETITION

In a noisy and complex environment, the techniques of
ground subtraction, plane detection [3], [5], and hierarchical
segmentation [11] cannot be reliably used as preprocessing
to provide object candidates. Consequently, the extraction of
incorrect shape patterns cannot be avoided. For example, a
tree crown and trunk could be divided into different objects;
the street with cars parking along the side may share the same
shape pattern with various small objects on the ground. Thus,
we propose an unsupervised method to subtract incorrect
patterns as a key step between conventional repetitive shape
pattern extraction and the category mining task, thus ensuring
correct object-level semantemes (Fig. 7).

We first define the descriptive area of a shape pattern as
follows: a cell xi in the environment is described by a shape
pattern c j if and only if xi is contained by an object sample
of c j. We write this descriptive relationship as xi⇒ c j.

Obviously, each cell can be described by multiple shape
patterns; alternatively we can say that different shape patterns
are competing for their descriptive area in the environment,
as shown in Fig. 6. Compared to incorrect shape patterns,
correct patterns describe different object categories more
clearly, with fewer conflicts in their descriptive area. Thus,
although the problem of incorrect pattern subtraction cannot
strictly be solved in an unsupervised way, pattern compe-
tition provides the following approximate solution to this
cognition-level problem.

Our goal is to select a set of shape patterns to represent
objects in the environment. These shape patterns should
satisfy the criteria that: 1) they can successfully describe
most cells in the environment; and 2) only one, or a limited
number of shape patterns, describes each cell. We encode
these two requirements in an energy function.

Given a set of cells X = {xi} and a set of shape patterns
C = {c j}, the penalty for a cell xi ∈ X that is described by
ni shape patterns, is defined as follows:

E(xi|C) =

{
logni ni > 0
λ ni = 0 (10)

ni = ‖{c j ∈C|xi⇒ c j}‖ (11)

where, a large penalty λ (λ = 1, here) is assigned if xi cannot
be described by any shape patterns in C, preventing excessive
subtraction of shape patterns.
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Fig. 6. Competitive relationship in the descriptive area between shape patterns. A cell is described by a shape pattern, iff the cell is contained by an
object sample of this pattern. Object samples of four different shape patterns are shown in the first row. Pattern A and Pattern D describe the street and
the tree, which are clear in semanteme, but Pattern B and Pattern C are incorrect patterns. The main competitive relationship between the four patterns is
shown on the right.

The energy function is defined as follows:

E(X |C) = ∑
i

E(xi|C) (12)

The whole task is converted to the selection of a subset of
shape patterns, Csub ⊆C, that minimizes the energy function
as follows:

arg min
Csub⊆C

E(X |Csub) (13)

We use a greedy strategy to obtain an approximate solution
to the energy minimization problem. Initially, Csub is set as
C. In each subsequent step, we select and remove a shape
pattern from Csub, in order to reduce the system energy in
the direction of the steepest descent, as follows:

argmax
ci

E(X |Csub)−E(X |Csub\{ci})
‖{x j ∈ X |x j⇒ ci}‖

(14)

The energy decrease is normalized by the descriptive range
of a shape pattern in order to obtain the energy gradient. This
iterative process stops when the energy cannot be reduced by
the removal of any more shape patterns. Fig. 7 illustrates the
improvement in the accuracy of shape patterns.

V. EXPERIMENTS

Intelligent vehicle and 3D point clouds: We develop an
intelligent vehicle system to collect 3D data. The vehicle is
equipped with five single-row laser scanners to profile its sur-
roundings in different directions, as shown in Fig. 1. A global
positioning system (GPS) and an inertial measurement unit
(IMU) are mounted on the vehicle. A localization module is
developed by fusing the GPS/IMU navigation unit with a hor-
izontal laser scanner. In this module, the localization problem
is formulated as a simultaneous localization and mapping
system with moving object detection and tracking [16], thus
ensuring both the global and local accuracy of the vehicle’s
pose estimation. The 3D representation of the environment
can be obtained by geo-referencing the local range data
from four slant laser scanners in a global coordinate system,
given the vehicle’s pose and the geometric parameters of the
slanted laser scanners.

The proposed category structure mining requires that each
category contains enough objects to form a shape pattern,
so the environment must be quite large and contain various
objects. Thus, our intelligent vehicle collects 3D point cloud
data in a large urban environment. The size of the whole

point cloud in our experiment is 300m× 400m. Within the
environment, the smooth street has a small variation in shape,
whereas the wall has a larger shape variation. The wall has
a high noise level due to its distance from the intelligent
vehicle. The wall also has various shapes, as it may be
occluded by tree branches. Trees have the largest shape
variation, due to their varied structures.

Results: Our proposed system, which combines MDL-
based intra-category variation estimation and incorrect pat-
tern subtraction, generates 10 shape patterns: 5 wall patterns,
1 tree pattern, 2 street patterns and 2 cars patterns. Some
object samples of each pattern are shown in Fig. 8.

A. Comparison with repetitive shape pattern extraction

As discussed in Section II, the main comparable approach-
es close to the spirit of category mining are the repetitive
shape detection [3], [5]. They clustered directly segmented
objects into shape patterns, and we realize their core idea in
a competing framework for comparison. Considering these
methods’ difficulties in a complex environment, we convert
their segmentation and matching techniques into our style
to make it fit our noisy and sparse data, and the competing
framework uses average-linkage hierarchial graph clustering
instead of our MDL-based clustering. The proposed system
obtains 47 clusters with sizes larger than τ before pattern
subtraction, so for comparison, the stopping criterion for the
average-linkage clustering is set as that 47 clusters with sizes
larger than τ have been obtained. Moreover, we further de-
sign two frameworks in between—one is made by replacing
the average-linkage clustering in the competing framework
with the MDL-based clustering, and the other by adding
incorrect pattern extraction to the competing framework.
Thus, each module’s performance in the proposed method
can be evaluated sequentially.

As category mining can be considered as a combination of
object detection and segmentation within a single framework,
we need to evaluate object detection and segmentation si-
multaneously, rather than sequentially. Moreover, in contrast
to conventional sample-based model learning and testing,
category mining learns directly from the point cloud of a
large environment, not from a set of depth images as samples.
In the environment, some objects are uncountable, such as
the wall and the street, so it is impossible to apply a sample-
based evaluation.
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Fig. 7. Effects of incorrect shape pattern subtraction. The extracted shape patterns are assigned to different categories (see Section V-A for details).
The descriptive areas of shape patterns in the same category are shown in these sub-figures. The color of the sub-figure box indicates its category—wall
(orange), tree (green), street (purple) or cars (blue). In each sub-figure, the descriptive areas of the different shape patterns overlap. The subtraction of
incorrect shape patterns reduces the descriptive area of all the shape patterns (red and green) to that of the correct shape patterns (green) that are better
matched to human cognition.

TABLE I
THE NMI VALUES OF SHAPE PATTERNS

Method NMI value
Proposed method 0.629
Competing method with MDL-based clustering 0.341
Competing method with incorrect-pattern subtraction 0.320
Original competing method[3],[5] 0.074

Therefore, motivated by evaluation methods of object
segmentation, we choose cell-level evaluation instead. For
this purpose, cells in the environment are manually labeled as
four categories: wall, tree, street and cars as the ground truth.
Some small fragments are unclear in object-level semanteme,
and not labeled nor used in evaluation. A shape pattern is
assigned the same label as most of its describable cells.

We use multiple evaluation indexes in our experiment. The
normalized mutual information (NMI) is a general evaluation
of shape patterns. A high NMI value indicates that (1) the
composition of the cells described by each shape pattern has
high purity, and (2) the number of shape patterns for one
object category is small. For detailed comparison, we also
utilize the purity, shape pattern number, detection rate and
error rate to evaluate the result from different perspectives.
All the evaluation indexes are calculated at the cell level.

NMI: mk
i (k ∈ {wall, tree, street, cars}) denotes the

number of cells in the ith pattern marked with label k. The
NMI value is calculated as follows:

NMI = ∑
i

∑
k

mk
i

N
log

Nmk
i

MkMi
(15)

Mi = ∑
k

mk
i Mk = ∑

i
mk

i N = ∑
k

Mk (16)

Table I lists the NMI values of the proposed method
and three competing frameworks. From this table, we can
conclude that the NMI value is increased by the incorrect
pattern subtraction and the use of the MDL principle in
clustering.

TABLE II
THE SHAPE PATTERN NUMBER AND THE PURITY OF DIFFERENT OBJECT

CATEGORIES

Shape pattern number (upper) / Purity (lower)
The method Wall Tree Street Cars
The proposed method 5 1 2 2

0.985 0.974 0.860 0.635
The competing method with 12 15 15 5
MDL-based clustering 0.974 0.850 0.746 0.588
The competing method with 1 0 4 1
incorrect pattern subtraction 1.000 none 0.857 0.629
The original competing 1 0 40 6
method[3],[5] 1.000 none 0.848 0.589

Purity, detection rate, and error rate: The purity of
a shape pattern Purityi is calculated as follows:

Purityi = max
k

mk
i /Mi (17)

We show the shape pattern purity in Fig. 8. The purity of
a category is calculated as follows:

Purityk =
∑i:∀ j,mk

i≥m j
i
maxk mk

i

∑i:∀ j,mk
i≥m j

i
Mi

(18)

Table II lists shape pattern numbers and purities of dif-
ferent categories learned in the proposed method and three
competing frameworks. As the cars are connected by the
street in object samples of cars patterns, the cars category
has relatively low purity.

We can consider category mining as a category detection
task: for a cell xi⇒ c j, if shape pattern c j belongs to category
k, we say that xi can be detected as category k. The same
cell may be detected as different categories. The category
detection result is shown in Fig. 8. The detection rate of a
category is the percentage of cells that are correctly detected,
out of all the cells that are manually labeled as this category
in the ground truth. The error rate of a category is the
percentage of cells incorrectly detected, out of all the cells
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Fig. 8. Collected samples and environment understanding. Different colors indicate different categories—wall (orange), tree (green), street (purple) and
cars (blue). Object samples of each shape pattern are shown with the pattern’s purity (defined in (17)) on the right. In fact, the last wall pattern describes
slanted roofs of buildings, so its shape is different from the ordinary wall. The environment is represented by cell-level category detection. For more results,
please see our demo in the supplementary materials.

not labeled as this category. Table III shows the detection
rate and error rate of each category.

The MDL-based graph clustering assigns different shape
variations for different object categories, while the average-
linkage graph clustering is prone to get clusters with high
density in the similarity graph (small shape variation). Thus,
it is difficult for average-linkage graph clustering to obtain
clusters with large shape variations in a complex environ-
ment. As a result, the original competing framework (with
average-linkage graph clustering) yields 40 street clusters, 6
cars clusters, only 1 wall cluster, and no tree cluster. This
is because street has a small shape variation, cars has a
moderate shape variation, whereas wall and tree have a large
shape variations, as discussed in the beginning of Section V.

In contrast, the MDL principle assigns suitable shape
variations for different object categories, so the competing
framework with MDL-based clustering yields a more bal-
anced result: 12 wall clusters, 15 tree clusters, 15 street
clusters and 5 cars clusters. Moreover, for the large-shape-
variation categories such as wall and cars, the MDL-based
graph clustering leads to a much higher detection rate than
the average-linkage graph clustering.

Incorrect pattern subtraction selects a set of semanteme-
correct shape patterns to describe objects in the environment.
The NMI value, as a general evaluation of shape patterns,
proves the significant contribution of the incorrect pattern

subtraction (Table I). More specifically, the incorrect pattern
subtraction greatly decreases the shape pattern number and s-
lightly increases the purity of each object category (Table II).
The error rate for the category detection is greatly reduced by
incorrect pattern subtraction at the cost of a slight decrease
in the detection rate (Table III).

B. Comparison with AMN-based point cloud classification

AMNs have demonstrated a superior performance in point
cloud classification [20], [21], [28] and segmentation [27] in
recent years. Although not designed for category structure
mining, and despite their requirement to learn a max-margin
classifier from a large number of training data, we compare
AMNs with our system from the perspective of environment
understanding.

Thus, we compare the detection rate and error rate of
supervised AMN-based classification [20], [28] with our
category detection based on the mined category structure
knowledge, as shown in Table III. AMNs are trained to
classify the wall, tree, street, cars, and unlabeled categories.
The unlabeled category mainly consists of small fragments
due to data sparsity and other objects, such as buses. These
are unclear in the object-level semanteme, and thus not used
in the previous evaluation. Therefore, following the same
criterion, neither the unlabeled data nor the point cloud



TABLE III
THE DETECTION RATE AND THE ERROR RATE OF DIFFERENT OBJECT

CATEGORIES

Detection rate (upper) / Error rate (lower)
The method Wall Tree Street Cars
The proposed method 0.647 0.646 0.821 0.587

0.004 0.008 0.070 0.045
The competing method with 0.768 0.886 0.996 0.672
MDL-based clustering 0.016 0.179 0.217 0.058
The competing method with 0.164 none 0.832 0.356
incorrect-pattern subtraction 0.000 none 0.079 0.025
The original competing 0.164 none 0.813 0.530
method[3],[5] 0.000 none 0.084 0.062

AMN-based classification[20],[28] 0.621 0.692 0.157 0.050
300 cliques for training 0.049 0.029 0.010 0.022
AMN-based classification[20],[28] 0.617 0.729 0.343 0.241
900 cliques for training 0.019 0.020 0.019 0.017
AMN-based classification[20],[28] 0.582 0.779 0.501 0.304
2700 cliques for training 0.016 0.021 0.023 0.020

cliques (see [20], [28]) classified as unlabeled by the AMN
are used in the evaluation.

The max-margin strategy allows the AMN to operate as a
powerful classifier, but it only uses features extracted from
a single local clique to determine the overall category of the
clique. Thus, in many cases, normal objects are classified as
unlabeled (object fragments).

VI. DISCUSSION AND CONCLUSIONS

We have successfully developed an algorithm specially for
category pattern mining in a large urban environment. Ex-
periments show its superior performance in an environment
that has objects with different intra-category shape variations.
In addition, we propose a global solution to the incorrect
segmentation problem for complex and noisy objects.

In this study, we only cut object samples of a fixed
scale from the environment, as most of the objects are
on this scale. In future research, we intend to apply our
approach to different 3D environment data using multiple
scales for object sampling. Without color information, object
segmentation based on the statistical common shape within a
cluster cannot provide as clear an object boundary as image
segmentation. Thus, we will add color information in future
research.
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