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Abstract— Abnormal activity detection plays a crucial role
in surveillance applications, and a surveillance system that can
perform robustly in the extremely crowded area has become
an urgent need for public security. In this paper, we propose a
novel laser-based system which can simultaneously perform the
tracking, semantic scene learning and abnormality detection in
the large and crowded environment. In our system, a novel
abnormality detection model is proposed, and it considers and
combines various factors that will influence human activity.
Moreover, this model intensively investigate the relationship
between pedestrians’ social behaviors and their walking sce-
narios. We successfully applied the proposed system to the JR
subway station of Tokyo, which can cover a 60x35m area,
robustly track more than 180 targets at the same time and
simultaneously perform the online semantic scene learning and
abnormality detection with no human intervention.

1. INTRODUCTION

The intelligent surveillance system which can cover a large
and crowded public area has become an urgent need for the
public security, and one of its key components is to detect
abnormal behavior patterns and recognize the normal ones.
However, most existing systems are usually based on camera,
which can only cover a small area, and it difficult for them to
work robustly in some extremely crowded scenarios, such as
subway station, public square, intersection and etc (as shown
in Fig.1). Therefore, the purpose of this paper is to develop
a novel intelligent system and abnormality detection model
that can perform the detection of abnormal activities robustly
in the large and extremely crowded scenarios.

While the pedestrians are walking in a specific scenarios,
their activities will be greatly influenced by the semantic
scene knowledge (e.g., dominant paths, entry or exit, crowd
flow and etc.). For instance, “persons usually walk from en-
trance to exit”, “normal persons have to walk in the dominant
paths and avoid static obstacles”, “normal persons who are
in a crowd flow can only follow the other people in it.”
A statistical scene model can provide a priori knowledge on
where, when and what types of activities occur. Therefore, in
this paper, we intensively investigate the relationship between
pedestrians’ social behaviors and their walking scenarios,
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Fig. 1. How to detect abnormal activity in the extremely crowded area?
This is the JR subway station of Tokyo, and the data was obtained by eight
single-row laser scanners. The green points are the background, the blue
ones are the foreground, and the red ones show the position of single-row
laser scanners. In this case, each person is represent by several points. For
more details about the experimental site, please refer [1]. Person A, B and
C were walking on the closed road, how to detect their activities?

and propose a novel abnormality detection model to detect
abnormal activities of persons in the large and extremely
crowded environments. Our model considers and combines
various factors that will influence human activity (as shown
in Fig.2), such as global semantic scene structure (paths,
exit/entrance), local instantaneous crowd flow, centrifugal
force among pedestrians. Lastly, we apply this model into an
“adaptive tracking-learning loop” and develop an intelligent
surveillance system which can simultaneously perform the
tracking, semantic scene learning and abnormality detection
in a fully online way.

The main contributions of this paper can be summarized
as follows: (1) We propose a novel abnormality detection
model which intensively investigate the relationship between
pedestrians’ social behaviors and their walking scenarios. (2)
We develop a unified framework that couples the tracking,
semantic scene learning and abnormality detection, and make
them supplement each other in it. (3) We firstly apply an
online system that can robustly track more than 180 targets
at the same time and perform robustly abnormality detection
to a real scene (JR subway station of Tokyo).

The remainder of this paper is structured as follows: In the
following section, related work is briefly reviewed. Section
IIT provides an overview of the proposed system. Section IV
and V provide the details about the abnormality detection
model and “tracking-learning” module. Experiments and
results are presented in Section VI and the paper is finally
summarized in Section VII .

II. RELATED WORK

Abnormality detection is an active area of research over
these years, and an in-depth review of its literature can be
found in a recent survey by Chandola et al. [2]. Traditional
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Fig. 2. Overview of the abnormality detection model. While the normal pedestrians are walking in the large and high density scene (such as person 201
in Fig.a), their activities should follow three principles (Fig.b): (1) Global scene structure: person should consider the scene structure, move from entrance
to exit, walk on the dominant paths, avoid obstacles and find the shortest path. (2) Local crowd flow: persons who are in a specific crowd flow have to
follow other persons in it. (3) Centrifugal force: persons usually want to keep a comfortable distance from others. Based on the three principles, our model
compute the abnormal energy of persons to measure their activities (as shown in Fig.c, the color circle shows the value of abnormal energy).

abnormality detection approaches usually need to pre-define
the known priori behavior classes (normal activities vs ab-
normal ones), and utilized the supervised learning model
to detect the abnormal ones. Representative publications
include [3], [4], [5], [6], [7]. On the other hand, researchers
also propose some methods [8], [9], [10], [11], [12], [13],
[14] to detect abnormal activity in an unsupervised manner.
These methods are usually based on the tracking. While
the trajectories are collected by tracking, the clustering is
performed on these trajectories and some small clusters are
labeled as abnormal. More recently, some “Sparse Coding”
based methods [15], [16] are proposed to detect abnormal
activity. These methods are usually based on an intuition
that usual events are more likely to be reconstructible from
an event dictionary, whereas unusual events are not.

However, few of existing works consider the relationship
between pedestrians’ social behaviors and their walking
scenarios. Recently, some methods [17], [18] utilize crowd
flow and semantic scene knowledge to detect abnormal
activity and obtained good results. But these methods can be
only applied for some simple scene (e.g. single sink/source,
single crowd flow). Different to these methods, in this paper,
we propose a novel abnormality detection model which
intensively investigate the relationship between pedestrians’
social behaviors and their walking scenarios.

III. SYSTEM OVERVIEW

The overall abnormality detection system is illustrated in
Fig.3, and it mainly contains four module: sensor fusion
module, tracking module, learning module and abnormality
detection module.

In the sensor fusion module, a number of single row laser
scanners are exploited, so that a quite large area can be
covered, while occlusions could be solved to some extent.
A time server is utilized to deal with time synchronization
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problem between different sensors. For registration, the laser
scans keep a degree of overlay between each others, and
several control points in a box are utilized for computing
the transformation matrix. For more details about this part,
please refer [1].

The tracking module utilizes the independent particle
filter-based tracker to perform the tracking. Once the tracking
results are obtained, the global scene structure and local
crowd flow can be online learned with these tracked tra-
jectories. Meanwhile, the learned scene structure and crowd
flow in turn assist in the tracking module and improve the
tracking results. Then, the tracking results, learned scene
structure and crowd flow are combined to compute the
global scene structure energy, local crowd flow energy and
centrifugal force energy for each person. Lastly, our system
outputs abnormal activities with the help of these energy
measurements.

IV. ABNORMALITY DETECTION MODEL
A. Model Overview

We begin by introducing notations to formulize our prob-
lem. At time ¢, pedestrian 7 is represented by x;; =
(Pit; Vi), where p;, = (x,y) denotes its 2D position on
the ground plane and v;; = (vg,vy) is its velocity vector at
time ¢. We assign the abnormal energy E(v; ., p;) for each
person to measure its activity, and the higher energy F, its
activity is more likely to be the abnormal one.

While the normal pedestrians are walking in the large and
crowded environment, their movements should follow three
principles (as shown in Fig.2): (1) Global scene structure.
A person usually plans to go to a specific exit of the scene,
walks on the common road, avoids the obstacles and finds
the shortest and comfortable path. (2) Local instantaneous
crowd flow. At some specific time, some local areas will be
quite crowded and become a crowd flow. A normal person
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in a particular crowd flow will be greatly influenced by it
because he must follow other persons in it. For instance, as
shown in Fig.5(b), at a specific time in a subway station, a
large number of persons were just getting off from a train and
walking together to catch another train, which were becom-
ing a crowd flow. (3) Centrifugal force of pedestrians. The
activity of a pedestrian is also influenced by the centrifugal
force [19] from its neighboring persons, as he wants to keep a
comfortable distance from others, and he will feel increasing
discomfort as he gets closer to a stranger. Obviously, if some
persons violate these principles greatly, their activities should
be the abnormal ones.

Therefore, the abnormal energy should takes into account
these factors and can be computed by:

E(vit,pit) = Bi.tEgioba(Vit, Piyt)+

G tEiocat(Vig, Piyt) + (1 — i) Feent (Vi Pist), )
where Egiopq; is the global scene structure energy, Ejocar
the local crowd flow energy and F..,; the centrifugal force
energy of pedestrians, 3; + and «; ; is the control parameters,
where ;¢ € (0,1) is utilized to control the influence of
Elocqr and Fiept, which is depend on the density of crowd
flow Sp(t), where x;; € S,(t). It is very easy to be
understood: while the density of some local area is quite
low, there would be little crowd flow or the persons’ number
in this crowd flow are small, and the pedestrians’ activity
will be greatly influenced by its nearby persons, not by
the crowd flow. In contrast, the activity of persons will be
more influenced by the crowd flow while the local area
density becomes specially high. In the next subsections, we
will provide the details about how to compute these energy
functions.

B. Global Scene Structure Energy and Local Crowd Flow
Energy

Given the current position p; ; of pedestrian ¢ by tracking,
online learned scene structure map and N exits/entrances
(as shown in Fig.4-a), it is easy for us to obtain N planned
trajectories {L! ,(x,y)}, for pedestrian i at time ¢ with A
Star search algdrithm (as shown in Fig.4-b). Hence, a normal
person would like to make its motion be more like to its
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Fig. 4. Global scene structure energy. Given the online learned scene
structure (Fig.a), we can find possible planned paths of person 201 with A*
algorithm (Fig.b), and these paths can be utilized to compute global scene
structure energy in Eq.(2).

planned path, and the Egop0; can be computed by:

N
Egiobal (Ve i) = E wy X
=1

OLL ,(piy) @
Vit i,t\Pit) o 2
_ ’ _ B 2
e)(I)( |‘||‘7i,t“ é?ﬂ?f)g/ || / 671)7
a7l )
where ()Lg;igzl’t) is the tangent vector of L} ,(x,y), and it

denotes the velocity vector of Léyt(gv7 y) at position p; ;. o1
is a constant parameter and w; is the weight of the possi-
ble planned trajectories, which is depend on the similarity
between person’s current trajectory and this planned one. In
this research, we utilize the approach of Wang et al. [12]
to measure the similarity of two trajectories, please refer it
for more details. Once the weights of planned trajectories
are very small, we throw them and stop making new path
planning for these exits/entrances.

On the other hand, the local crowd flow energy should be
also computed. A normal person in a particular crowd flow
has to makes its motion be close to the crowd flow. Hence,
the motion distribution for a specific crowd flow should be
extracted firstly. Given the crowd flow S, (t), where x;; €
Sp(t) (as shown in Fig.5-b), its motion distribution can be
computed by:

%Sp(t)(pi,t) = exp(— < (02(Pi,e), Vy(Piyt)), 3)
(cos(ag, 1y (Pie), sin(ag () (i) > /1),

here <, > stands for dot product, 7, is a constant parameter,
(02(Pit), vy(Pit)) is the velocity expectation of cluster
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Fig. 5.
distribution, crowd flow energy can be easily computed by Eq.(5).

Sp(t) ata pgrticular.positio.n, and agp( £ (pzt) i.s the principal
component in the distribution of flow orientation:

M
Os,)(Pit) = Y TmN(as, 1) (Pit); 1, 0),

m=1

“)

where Eq.(4) is GMM model and its parameters 7, can
be obtained through EM iteration. An example of Eq.(3) is
shown in Fig.5-c, the color denotes the speed, and the arrows
display the principal orientation.

Hence, the local crowd flow energy Ej,cq,; can be com-
puted by:

Elocat (Vi Pit) = exp(—||vii— Vs 1) (Pi)|]>/203), (5)
where o is a constant parameter.

C. Centrifugal Force of Pedestrians

For the pedestrian ¢, the repulsive effects from pedestrian
7 depend not only on the relative velocity between them,
but also on the distance of them (i.e. the headway), and
hence these effects can be expressed by a force term with
the following form:

(©6)

where a;; is the acceleration of pedestrian i caused by
pedestrian j, m; the mass of pedestrian i; f(vj, ||pi;||) is
the function of v;;, and ||p;;|| to be determined. p;; is the
distance between pedestrian 7 and j, and it should be:

Fij = mia;; = —m; [ (vij, ||pijl]) e,

)

v;; denotes the projection of the relative velocity of pedes-
trian ¢ and j in the direction e;;, and can be computed by:

1

Pij = Pj — Pi-

Vij = (Vi = Vi) - €ij + [|(Vie = vie) -eislll, ()
Pij
e, = . )
Y eyl
From Eq.(7), we can obtain
laij || = f(vij: [pis]])- (10)
According to the proof of [19], there should be
|az‘j|||2pij|| _c, an
v

ij
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(b) Crowd flow

(c) Motion distribution

Crowd flow energy. Given the online learned crowd flow (Fig.b), we can compute its motion distribution (Fig.c). With the help of motion

where C' is a constant depending on the pedestrian’s charac-
ter. For simplicity, we assume C' = 1, and obtain

V2

Fij = —miiw eij. (12)
[Ipi; ]

If (viy — vjt)-ej; > 0, ie., pedestrian ¢ gets close
to pedestrian j, the repulsive effects occur. However, if
(Vig — vjt) - €5 < 0, ie., pedestrian j walks faster than
pedestrian 4, there are no repulsive effects. Larger v;; creates
greater repulsive effects in the former case. We assume that
pedestrians react to those who are within their angle of
view and the field of vision is 180°, this situation can be
characterized by the following coefficient:

Vit €+ |[Vie - el

K =
N [Ivi.ell

1
- X 13
5 (13)
Hence, the Centrifugal Force between pedestrian 7 and j
should be given in the form

2
F.. — K Viji o
1y — —m; 1] mem-

Therefore, for pedestrian 4, its centrifugal force of J neigh-
boring persons can be computed by:

(14)

J 2

Vi
Fcent(vi,tvpi,t) = H - Zle 7He1.7||

ij 15)
= ’Ipi

V. TRACKING AND LEARNING

In order to compute the abnormal energy, we need to
obtain the tracking results of persons, scene structure and
crowd flow model. In the proposed system, these information
can be computed by “an adaptive tracking-learning loop™:
we utilize the obtained tracking results to online learn the
scene structure and crowd flow model. At the meanwhile, the
learned statistical scene model in turn can be used to assist
in tracking. Therefore, this mode of co-operation between
tracking and learning becomes “an adaptive loop”, which
can not only dynamically reflects the change of statistical
scene model, but also maintain the robust tracking in the ex-
tremely crowded environment. Moreover, the entire process
is completely online and automatic that require no human
intervention. In this section, we will provide the details about
them.
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Fig. 6. Global scene structure learning. With the help of tracking results (Fig.a), we can compute incremental density distribution (Fig.b), and the global
scene structure can be obtained by thresholding the incremental density distribution and the gradient searching.

A. Tracking Model

Consider the state x; ; = (p;¢, Vi) of person ¢ at time
t, with its measurement z; ;, where measurement z, ; is the
foreground laser points set after Mean-shift clustering [20],
we should estimate its state as

X+ = argmax p(X; ¢|2;.¢). (16)
Xi,t

The posterior probability p(x; ¢|z;+) can be computed by a

Bayesian recursion as

P(Xit|Zit) = YP(Zi X)X

/p(xi,t|xi,t71)p(xi,t—l‘Zi,tfl)dxtflv a7
where + is the normalization constant, p(z; ;|x; ) the sim-
ilarity between target’s state and measurement (observation
model), and p(x;¢|x;+—1) is the transition probability (dy-
namic model).

Based on our previous work [21], [22], we utilize particle
filter technique to compute equation (16) and (17). For more
details about dynamic model p(x; ¢|x;—1) and observation
model p(z;;|x;;), please see the above two references.
In addition, we utilize the online learned statistical scene
model to improve the tracking results in further: the crowd
flow is used for controlling the dynamic model, and the
scene structure is for dealing with the problem of uncertain
measurements. For more details about this part, please refer
[21]. After re-weighting and re-sampling in the particle filter
process, it is easy for us to obtain the position p;; and
velocity v; ; of each pedestrian.

B. Global Scene Structure Learning

With the proceeding of tracking, it is easy for us to obtain
a large number of trajectories of pedestrians, and we can
utilize them to learn the global scene structure. Firstly, the
spatial extent of these trajectories should be learned and
it can be described by the density distribution. Given all
the trajectories L, ;(x,y) we obtained at time ¢, the density
distribution at position (z,y) can be estimated as:

>

(zi,y:)ELi ¢t

Z exp(— (& — i,y — y)|I? /1a),

Li€Q

lenbal($7 Y, t) =
(18)
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where €2 is all the trajectories we have obtained at time ¢, 74
a constant parameter. Therefore, the dominant paths of the
scene were easily extracted by thresholding the incremental
global density distribution (as shown in Fig.6).

On the other hand, the exit and entrance of the scene
are two important scene properties, which are also called
sources/sinks. The sinks/sources can be easily detected from
the global density distribution ®gi04q;. As shown in Fig.6-
c, the sinks/sources usually occur at the region of great
change of the global density distribution after thresholding.
In addition, the changed direction must follow the principal
orientation of the crowd flow. Hence, the location p;,, of
sinks/sources can be easily detected by a gradient searching
at the principal orientation of density distribution:

Piing = argmax(< VOg, ) (Psink 1), Up/|Up| >), (19)

Psink
where where ¥, is the principal direction of the crowd flow
Sp(t), and Dg (4 is its density distribution.

An example is illustrated in Fig.6, as the 1090 frames
proceeded, the dominant paths and sinks/sources of the scene
were obtained, and this scene structure map can be utilized
to assist in tracking and measure the pedestrians’ abnormal
energy.

C. Crowd Flow Learning

The crowd flow Sy, () can be seen as a group of persons
who have similar activities and spatial information, they are
usually going to the same destination with similar velocity.
Hence, once we obtain the trajectories of pedestrians at time
t, they are should be clustered into n clusters {Sy (%)},
In order to dynamically reflect the change of crowd flow,
the clustering must be online and can be seen as a function
of time ¢{. We consider each cluster S;(t) as a moving
hyperplane. Thus, we can model a union of n hyperplane
in R, where S,(t) = {x € RP : b (t)x = 0},p =
1,...,n, where x is the person state, b(t) € RP, as the
zero set of a polynomial with time varying coefficients using
normalized gradient descent. Then the hyperplane normals
are estimated from the derivatives of the new polynomial
at each trajectory. Lastly, the trajectories are grouped by
clustering their associated normal vectors. For more details
about this part, please refer [23], [21].

On the other hand, we have to control the influence of
the crowd flow in the energy function. Let us come back to
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Fig. 7. The results of the proposed system. The first row is the tracking results, and the second is the abnormal energy, where the color shows abnormal
energy value, the darker the greater value (as shown in the color bar). The abnormality detection results are shown in the last row. Some suspicious persons
could be easily detected by our system, please note that person 131, 117, 60 and 80 in frame 56, person 24 in frame 99 and person 9 in frame 116. For

more results of our system, please see our supplementary video.

Eq.(1), for the pedestrian i, the influence from crowd flow
Sp(t) will be depend on the density distribution of this crowd
flow, and it can be computed by:

ap=1- eXP(—@Sp(t)(Pi,t; 1)), (20)

where pedestrian x;¢ € Sp(t), oz € (0,1), and this
equation can be understood like this: at a specific time ¢,
a person x; ; in crowd flow S,(t) were walking in position
Pi:. If this area in this crowd flow is quite crowded, this
person’s activities will be greatly influenced by this crowd
flow. In contrast, this influence will be little.

In summary, we can utilized the online learned scene
structure and crowd flow to compute Eq.(2) and Eq.(5). Then,
the abnormal energy E(v;:,p;:) for pedestrian i can be
computed by Eq.(1). Lastly, the abnormal activities can be
detected by thresholding the abnormal energy of each person.

VI. EXPERIMENTS AND RESULTS

We applied the proposed system to the real scene: lobby
of JR subway station (about 60mx35m). Eight single-row
laser scanners (LMS291) produced by SICK was utilized.
They were set above 10cm on the ground surface and
performing the horizontal scanning with a frequency of 37
fps. The selected data used for evaluation was from 7:00am
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to 8:30am when was a very busy time in Tokyo. We selected
some representative sequences, and labeled some obvious
abnormal activities in them. Hence, the «;, in Eq.(1) and
the threshold of abnormal energy could be easily learned by
the regression analysis. In addition, o and o2 in Eq.(2) and
Eq.(5) was set to 0.3. In this section, we will present our
experimental results and perform the quantitative evaluation.

A. Results

Some selected results of our system are shown in Fig.7.
The first row is the tracking results, and the second is the
abnormal energy, where the color shows abnormal energy
value, the darker the greater value (as shown in the color bar).
The abnormality detection results are shown in the last row.
From this figure, we can see that some suspicious persons
could be easily detected by our system, such as person 131,
117, 60 and 80 in frame 56 (walking on the closed road),
person 24 in frame 99 (what was it doing?), person 9 in
frame 116 (it was not following other persons and walking
in a strange path) and etc. For more results of our system,
please see our supplementary video.

B. Quantitative Evaluation and Comparison

In order to perform quantitative evaluation, we invite three
persons to label the abnormal activities in our data. One of
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Fig. 8. Quantitative comparison among four methods. This figure shows

the ROC curves of four methods. From this figure, we can see that the
proposed system has the better performance than the other three methods.

them has the academic background, and the other two do
not have any academic background of this area. We tested
our system with 3000 frames, and the ROC curve of the
proposed system is shown in Fig.8. In addition, a quantitative
comparison was also conducted among four methods: Fuzzy
K-means, Agglomerative Clustering, Song et al. [14] and
ours. For the first two competing algorithms, the abnormal
activities were detected by finding the outlier trajactories of
the clusters. The details of this comparison are also shown in
Fig.8. From this figure, we can see that the proposed system
has the better performance than the other three methods.

VII. CONCLUSION

In this paper, we propose a novel abnormality detection
model and develop an fully online surveillance system, which
can a cover large area, perform robust tracking, semantic
scene learning and online abnormal detection. The proposed
model incorporates the intensively explored semantic scene
knowledge and social interactions among persons, and the
experimental results have demonstrated its feasibility and
robustness. Actually, for the laser scanner data, it is difficult
to give a clear and unify definition about abnormal activity,
therefore, how to scientifically evaluate the detected results
will become an very important issue and it will become the
focus point of our future research.
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