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Abstract

The frequency and intensity of natural disasters has signifi-
cantly increased over the past decades and this trend is pre-
dicted to continue. Facing these possible and unexpected dis-
asters, urban emergency management has become the espe-
cially important issue for the whole governments around the
world. In this paper, we present a novel intelligent system for
urban emergency management during the large-scale disas-
ters. The proposed system stores and manages the global po-
sitioning system (GPS) records from mobile devices used by
approximately 1.6 million people throughout Japan over one
year. By mining and analyzing population movements after
the Great East Japan Earthquake, our system can automati-
cally learn a probabilistic model to better understand and sim-
ulate human mobility during the emergency situations. Based
on the learning model, population mobility in various urban
areas impacted by the earthquake throughout Japan can be au-
tomatically simulated or predicted. On the basis of such kind
of system, it is easy for us to find some new features or pop-
ulation mobility patterns after the recent and unprecedented
composite disasters, which are likely to provide valuable ex-
perience and play a vital role for future disaster management
worldwide.

Introduction
The 9.0 magnitude Great East Japan Earthquake (O. No-
rio and Tatano 2011) occurred on 11 March 2011 off the
east coast of Honshu, Japan’s largest island. Since mod-
ern record keeping began in 1900, this is considered the
most powerful earthquake to have occurred in Japan and is
one of the five most powerful historical earthquakes world-
wide (O. Norio and Tatano 2011). The Great East Japan
Earthquake disrupted the public transportation systems in
the Greater Tokyo Area (almost the whole metro or railway
services were at a standstill), the largest metropolitan area
in the world with more than 1/3 GDP of Japan, and caused
large traffic chaos and urban disorders. On the other hand,
many earthquake experts in Japan predicted that there would
be another big earthquake at Tokyo with high probability in
next five years. Facing these possible and unexpected disas-
ters, Japan government must prepare contingency plans for
them. Thus, there is an urgent need to develop an intelligent
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Figure 1: What kinds of experiences or model can we
learn from the unprecedented composite disaster of Japan in
2011? The Great East Japan Earthquake disrupted the pub-
lic transportation systems in the Greater Tokyo Area, and
caused large traffic chaos and urban disorders. By mining
and analyzing population mobility after the earthquake, can
we learn some experiences, simulation or predictive models
for future disaster relief and emergency management world-
wide?

system that can understand and model the patterns of popu-
lation movements o during disasters, and use this knowledge
to develop simulation or predictive models for future disas-
ter mitigation and urban emergency management.
Therefore, in this paper, we present a novel intelligent sys-

tem that stores and manages daily GPS records from approx-
imately 1.6 million individuals throughout Japan over one
year for urban emergency management during large-scale
disaster. By mining this enormous set of Auto-GPS mo-
bile sensor data, the proposed system can automatically an-
alyze and understand population movements in the Greater
Tokyo Area after the Great East Japan Earthquake. Based on
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Figure 2: System overview: This figure illustrates the overall system, please see the texts for details.

these analyzed population behaviors, our system constructs
a probabilistic inference model to effectively represent peo-
ple’s mobility patterns during this disaster. Furthermore, on
the basis of the constructed model, our system can simulate
or predict population mobility under various city emergency
states for future disaster relief and emergency management.
The remainder of this paper is structured as follows: In the

following section, the overall system is briefly introduced.
Section 3 and 4 provide the details about mobility graph
construction and model learning. Experimental results are
presented in Section 5. Related work is briefly reviewed in
Section 6, and the paper is finally summarized in Section 7.

System Overview
The overall system is illustrated in Fig.2, and it mainly con-
tains three modules: database server and visualization mod-
ule, learning module (mobility graph construction and MDP
learning), and probabilistic reasoning module. The database
server and visualization module stores and manages the GPS
data for all the people being tracked; it provides indexing,
retrieval, editing and visualization services. The mobility
graph construction module is able to construct population
mobility graph after the earthquake, and automatically an-
alyze population mobility patterns and their behaviors. The
MDP learning module uses these analyzed emergency be-
haviors to build a probabilistic model, and the probabilistic
reasoning module is able to simulate or predict population
mobility in various urban areas for some future emergency
situations.

Mobility Graph Construction
To understand, simulate and predict human mobility during
the disasters, we need a concise model to effectively rep-
resent population movements after the earthquake. Firstly,
we need to construct the population mobility graph to model
the relationship between various affected urban regions. It is
easy to think of using transportation networks to construct
it. However, most public transportation systems were not
available after the earthquake occurred. Hence, in our sys-
tem, we utilize the collected population trajectories after the
Great East Japan earthquake to construct it through collab-
orative learning (L. Wei and Peng 2012). The creation of

this type of model is possible because social interactions and
political responses in some urban areas are typically stable
through time, and large population movements (which are
often influenced by these conditions) are likely to remain the
same following different emergency situations (e.g. the pub-
lic transportation systems are completely unavailable again).
Region Construction: To construct the population mo-

bility graph, we firstly need to discover connected urban
areas after earthquake with the population movements (as
shown in Figure 3-B). We divide the geographical range into
disjoint cells by a given cell length l. Thus, the specific posi-
tion of the persons is able to be mapped into a cell, and over-
all population trajectories are transformed into a sequence of
cells. Then, we computed connection support of these cells,
and explored the connected geographical regions. After cell
merging process, we can build up the region of the pop-
ulation mobility graph. For more technical detail about it,
please refer (L. Wei and Peng 2012).
Edge Inference: Once the regions in the population mo-

bility graph are generated, we then need to infer edges and
derive some edge information, such as travel frequency,
travel time and etc. In this study, the mobility graph is a di-
rected graph G = (V,E), where V is a set of vertices and
E is a set of edges. Each vertex v represents a geographical
area, and the directed edge e indicates a transition relation-
ship, including travel frequency and travel time.
Given the constructed regions R, and the population tra-

jectories, we utilize these population movements travers-
ing the regions to derive edge connections and information
within regions. For each trajectory traversing the region, we
infer the shortest path between any two consecutive points
of the trajectory by virtual bidirected edges in the region,
and the travel time of each edge is estimated by the median
of all the travel times of the edge. In addition, the travel fre-
quency of each edge is able to be estimated by recording the
number of traversing trajectories. Similarly, we can also gen-
erate edges between regions: if some trajectories traversers
from one region to another region, an edges is constructed
between the two regions (as shown in Figure 3-C), and its
edge information is estimated by the same methods as pre-
vious discussions.
In summary, the whole process of the mobility graph con-

struction is able to be illustrated in Figure 3.



Figure 3: Mobility graph construction. Given the population trajectories after the earthquake (Fig.A), we constructed some
important regions as the nodes for the graph (Fig.B). Then, we utilized these trajectories traversing the regions to derive edge
connections (Fig.C). The final mobility graph was illustrated in Fig.D.

Model Learning and Probabilistic Reasoning
Inference Model Learning
Based on the constructed population mobility graph, the in-
ference model is able to be developed by using the Markov
Decision Process (MDPs) (Puterman 1994). MDPs provide
a natural framework for representing sequential decision
making, such as movements through various of urban ar-
eas. In MDP theory, the agent takes as sequence of actions
(a ∈ A), which transition between states (s ∈ S) and incur
an action-based cost (c(a) ∈ �). The agent is trying to min-
imize the sum of costs while reaching some destination, and
the sequence of action is called a path ζ. For MDPs, a set
of features (fa ∈ �) characterize each action, and the cost
of the action is a linear function of these features parameter-
ized by a cost weight vector (φ ∈ �). Path feature, fζ are the
sum of the features of actions in the path:

∑
a∈ζ fa. Thus,

the cost weight applied to the path features is:

cost(ζ|φ) =
∑
a∈ζ

φ�
fa = φ�

fζ (1)

In our problem, the population mobility graph provide us
a deterministic MDP, the urban region (nodes) is able to be
seem as state, the edge is the action, and the path is the peo-
ple’s movements after the earthquake (as shown in Fig.4).
These movements are parameterized by their path feature
fζ . For instance, a person’s movements can be described by:
travel through region A (dens = 0.37, type = residential)
to region B (dens = 0.58, type = commercial), and finally
stayed in region C (dens = 0.75, type = administrative)
with route 1 (frq = 0.37, time = 0.58) (A → B) and
route 2 (frq = 0.29, time = 0.62)(B → C), where dens
is the region population density, type the region types (e.g.
residential, commercial and etc.), frq the travel frequency
of the route, time is the travel time of the route, and etc.
Hence, we need to utilize all these emergency trajectories to
train a MDPs model that is able to optimally demonstrate
these people’s behavior after the earthquake. Obviously,
this is an Inverse Reinforcement Learning problem. In this
study, we utilize the Maximum Entropy Inverse Reinforce-
ment Learning algorithm (B. D. Ziebart and Dey 2008b;
2008a) to train the overall inference model.
Based on theMaximum Entropy Principle, the path distri-

bution is able to be defined as:

P (ζ|φ) =
e−cost(ζ|φ)∑

pathζ′ e−cost(ζ′|φ)
. (2)

Hence, the cost weight vectorφ from demonstrated behavior
is learned by maximizing the entropy of the distribution over
paths subject to the feature constraints from the emergency
trajectories, and it implies that we maximize the likelihood
of the observed data under the maximum entropy distribu-
tion as:

φ∗ = argmax
φ

L(φ) =
∑
D

logP (ζi|φ) (3)

This function is convex for deterministic MDPs
(B. D. Ziebart and Dey 2008a) and the optima can be
obtained using gradient-based optimization methods. The
gradient is the difference between expected empirical
feature counts and the learner’s expected feature counts,
which can be expressed by:

�L(φ) = f̃ −
∑
ζ

P (ζi|φ)fζi = f̃ −
∑
a

Gafa, (4)

where Ga is the expected action visitation frequencies, and
is able to be computed by enumerating all paths and proba-
bilistically count the number of paths and times in each path
the particular state is visited as Algorithm 1 and Eq.(5).
Algorithm 1 employs a more tractable approach by find-

ing the probabilistic weight of all paths from the origin so
to a specific action a, Z ′

a =
∑

ζo→a
e−cost(ζ), all paths

from the action a to the goal g, Za =
∑

ζa→g
e−cost(ζ),

and all paths from the origin to the goal, Zo = Z ′
g =∑

ζo→g
e−cost(ζ). Hence, the expected action visitation fre-

quenciesGa is computed by:

Ga =
ZaZ

′
ae

−cost(a)

Zo

. (5)

In summary, the inference model is able to be trained
by finding the cost weight parameters with Eq.(3), Eq.(4),
Algorithm 1 and Eq.(5) through the emergency trajectories
datasetD. With this training model, the people’s movement
or behaviors during some future emergency situations is able
to be easily simulated or predicted.
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Figure 4: Inference model learning. Based on the constructed mobility graph, the inference model was able to be developed by
using the Markov Decision Process (MDPs). The mobility graph provided us a deterministic MDP, the urban region (nodes)
was able to be seem as state, the edge was the action, and the path was the parameterized trajectories by their path feature. We
utilized the Inverse Reinforcement Learning to train the overall inference model.

Algorithm 1: Expected Action Frequency Calculation
Input: Cost weight φ, initial state so, and goal state sg.
Output: Expected action visitation frequenciesGai,j

.

Backward Pass
1. Set Zsi = 1 for valid goal states, 0 otherwise;
2. Recursively compute for T iterations

Zai,j
= e−cost(ai,j |φ)Zs:ai,j

Zsi =
∑

ai,j of si Zai,j
+ 1

Forward Pass
3. Set Z ′

si
= 1 for valid goal states, 0 otherwise;

4. Recursively compute for T iterations
Z ′
ai,j

= e−cost(ai,j |φ)Z ′
si

Z ′
si

=
∑

ai,j to si Z
′
aj,i

+ 1

Summing frequencies

5. Gai,j
=

Z′
si
e
−cost(ai,j |φ)

Zsi

Zsinitial

Probabilistic Reasoning
Based on the trained inference model, people’s behaviors or
movements is able to be simulated or predicted for some
similar emergency situations in the future. We utilize the
Bayes’s rule to perform this probabilistic inference: given
the partial observed movements (such as some trajectories
during first several hours after the event), ζA→B , the poste-
rior probability of the destinations is able to computed by:

P (dest|ζA→B ,φ) ∝ P (ζA→B |dest,φ)P (dest), (6)
where P (dest) is the mobility prior in a region A, and it de-
pends on the popular route inference (L.Wei and Peng 2012)
in the mobility graph, and P (ζA→B|dest,φ) is likelihood,
which is depended on:

P (ζA→B |dest,φ) ∝
∑

ζB→dest
e−cost(ζ|φ)

∑
ζA→dest

e−cost(ζ|φ)
, (7)

and Eq.(7) is able to be easily inferred by taking the sums
over paths from A to B to each possible destination using
the forward pass of Algorithm 1.

Hence, the possible population destination or routes can
be simulated or predicted by the Maximum a Posteriori
(MAP) estimation of Eq.(6).

Experimental Results

The proposed system stores andmanages GPS records of ap-
proximately 1.6 million anonymized users throughout Japan
from 1 August 2010 to 31 July 2011, which contains ap-
proximately 9.2 billion GPS records, more than 600GB csv
files. To analyze population mobility after the earthquake
in Greater Tokyo Area, we picked up approximately 95,000
persons’ trajectories during 14:46 JST, 11th March 2011 to
9:00 JST, 12th March 2011 (human movements during 18
hours after the earthquake) to perform the training and test-
ing. We set cell length as 1km, and manually labeled the re-
gion type in mobility graph. In this section, we will present
the experimental results of our system, and conduct several
evaluations.

Probabilistic Reasoning Results

Fig.5-A shows the training model for populationmobility in-
ference. Based on this model, given any specific urban area
and some partially observed people’s trajectories, our sys-
tem was able to automatically simulate or predict population
mobility. To show the probabilistic reasoning results during
the emergency situations, we assumed that the same event
occurred again, and let the training model simulate popula-
tion mobility. The results in some important urban areas are
shown in Fig.5-(B-D).
Meanwhile, based on the training inference model, we try

to recommend some safe and fast emergency routes during
emergency situations (e.g. the public transportation systems
are completely unavailable again). Here, our system selected
the high frequency and fastest (less travel time) ones in the
mobility graph between origin and destination, and recom-
mend them as emergency routes. Some selected results are
shown in Fig.6.
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Figure 5: Learned model and simulation results. Fig.(A) shows the learned inference model. The edge color indicates the edge
parameters. Here, it shows the travel frequency after the earthquake; this value is normalized from 0 to 1. Fig.(C-D) show the
simulation results. Given a specific area (red circle), the possible destinations are able to be simulated by the green circles. The
size of the green circle indicates the probability that large population will go there; larger circles indicate higher probabilities.
Meanwhile, the trajectories show the possible movements of people, and the color shows the probability which is normalized
from 0 to 1.
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Figure 6: Recommended emergency routes. This figure shows some examples of the recommended emergency routes between
different origins and destinations. The color denotes the route priority, and the warmer one means it will be better.

Performance Evaluation
We evaluated our system from two aspects: performance of
mobility simulation for population flow and performance of
destination prediction for individual person.

Evaluation of Population Flow Simulation To evaluate
the simulation results of population flow, we performed K-
fold cross-validation. The whole disaster data were ran-
domly partitioned into three sub-samples: one sample was
used as validation data while the other two were used as
training data. The cross-validation process was then repeated
three times, with each sub-one used exactly once as valida-
tion data. For each repetition, we computed the Jaccard sim-
ilarity coefficient (P. Tan and Kumar 2005) between simula-
tion results obtained by the training model and real popula-
tion mobility distribution in testing samples for some impor-
tant urban areas (some high weight nodes) in Greater Tokyo
Area. The overall simulation accuracy is shown in Table 1.
From this evaluation, we can see that: for most urban ar-
eas, the simulation accuracy of our system reached 86% or
higher.

Evaluation of Person’s Destination Prediction To eval-
uate the performance of destination prediction for individual
person. We randomly selected 80% trajectories of the disas-
ter data (18 hours after the earthquake) to train the inference
model, and used the remaining 20% data for testing and eval-
uation.
Evaluation metrics: To evaluate the performance of dif-

ferent predictive model, we followed the work (E. Cho and
Leskovec 2011), and used the following evaluation metrics.

Table 1: Simulation Accuracy

Areas Simulation Accuracy

Tokyo 91.68%
Shinjuku 87.56%
Shibuya 89.39%
Ueno 86.25%
Ginza 88.17%
Odaiba 86.37%
Roppongi 90.38%
Urayasu 87.35%
Ikebukuro 86.28%
Nagatacho 89.09%

(1) Predictive accuracy: This metric measures the overall ac-
curacy of different predictive models, i.e., given the time of
day of GPS trajectories in the test set, how accurately can
each model predict the exact place where the people will go.
For instance, accuracy of 0.6 means that 60% of the time
the model correctly predicts the exactly places where people
will go. (2) Log-likelihood: This metric measures the av-
erage log-likelihood of the GPS trajectories in the test set,
which is able to measure how well the test set fits the model.
(3) Expected distance error: This metric can be considered a
soft version of predictive accuracy in that it does not insist on
predicting the exact places, and it takes into account the spa-
tial proximity of predictions to actual destination. For more
details and definition on this metric, please refer (E. Cho and
Leskovec 2011).
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Figure 7: Evaluation of destination prediction. This figure shows the performance evaluation of four methodswith three different
evaluation metrics.

Baseline models: We considered three non-trivial base-
line models for comparison. (1) Most Frequented Location
Model (MF): For every hour of the day, this model predicts
the most likely (most frequent visited) place of a particu-
lar people. Despite its simplicity, this model is very strong
baseline. Lu et al. (X. Lu and Holme 2012) also used this
model to predict population mobility after the 2010 Haitian
earthquake. (2)Gaussian Model (GM): This model has been
proposed by Gonzales et al. (MC. Gonzalez and Barabasi
2008), and it models human movements as a stochastic pro-
cess centered around a single point. This model is static in
time and captures the scale of a person’s movements more
than anything else. (3) Periodic Mobility Model (PMM):
This model is built on the intuition that the majority of hu-
man movement is based on periodic movement between a
small set of locations. As the state-of-the-art methods, it has
been proposed by Cho et al. (E. Cho and Leskovec 2011),
which is able to predict the locations and dynamics of future
human movements.
Performance evaluation:We compared the performance

of our model with the performance of the baselines, and Fig-
ure 7 shows their performance. From this figure, we can see
that our approach obtained a much better performance than
the other competing methods on our dataset. Obviously, our
approach is powerful for predicting human disaster behav-
iors and emergency mobility than these competing methods
that are used for predicting human mobility during normal
times.

Related Work
Recently, a number of studies on human mobility patterns
during disasters have been proposed (M. Moussaid and
Helbing 2009; Hahm and Lee 2009), mainly focusing on
small-scale and short-term emergencies (e.g. crowd panics
and fires). However, research on the dynamics of popula-
tion movements on a national scale during large-scale dis-
asters (e.g.earthquakes, tsunamis, and hurricanes) is very
limited (X. Lu and Holme 2012), likely the result of dif-
ficulties in collecting representative longitudinal data in
places where infrastructure and social order have collapsed
(JP. Bagrow and Barabasi 2011; L. Bengtsson 2011) and

where study populations are moving across vast geographi-
cal areas (X. Lu and Holme 2012). In contrast, automobile
sensor data offer a new way to circumvent methodological
problems of earlier research because they offer high tempo-
ral and spatial resolution are instantaneously available, have
no interview bias, and provide longitudinal data for very
large populations (X. Lu and Holme 2012; JP. Bagrow and
Barabasi 2011; CM. Song and Barabasi 2010; MC. Gon-
zalez and Barabasi 2008; C. Song and Barabasi 2010;
N. Eagle and Lazer 2009; X. Song and Shibasaki 2013a;
2013b). Meanwhile, human mobility or trajectory data min-
ing (Z. Chen and Xie 2010; F. Giannotti and Trasarti 2011;
Z. Li 2010; J. Yuan 2010; J. Yuan and Xie 2012; Z. Li and
Nye 2010; J. Ye and Cheng 2013) have become a very hot
topic in many research fields.

Conclusion and Discussion

In this paper, we have present an intelligent system for
population mobility analysis and reasoning during large-
scale disaster, and the experimental results and evaluations
demonstrated that the accurate simulation or prediction of
large population mobility in severe disasters or emergency
situations were seem to be possible.

For future work, our system can be extended and im-
proved in the followings: Obviously, people’s mobility pat-
terns in emergency situations are very complicated, and will
be influenced by various factors. Fortunately, the inference
model of the system is a general model, and is very easy to
be extended.Hence, we need to study and considermore fac-
tors that will influence human mobility in emergency situa-
tions, and develop the more accurate inference model for it.
On the other hand, the recommendation module of our sys-
tem for emergency routes is still very simple. Currently, we
just recommend some high frequency visited or fast routes
for persons. In the future, some deep models and more fac-
tors for emergency routes recommendation should be care-
fully explored.
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